Вывод формулы. Как выразить одну переменную через другую? Как выразить переменную из формулы? Как преобразовать формулы по физике

Физика – наука о природе. Она описывает процессы и явления окружающего мира на макроскопическом ярусе – ярусе маленьких тел, сравнимых с размерами самого человека. Для изложения процессов физика использует математический агрегат.

Инструкция

1. Откуда берутся физические формулы ? Упрощенно схему приобретения формул дозволено представить так: ставится вопрос, выдвигаются догадки, проводится серия экспериментов. Итоги обрабатываются, появляются определенные формулы , и это дает предисловие новой физической теории либо продолжает и развивает теснее имеющуюся.

2. Человеку, постигающему физику, не нужно снова проходить каждый данный непростой путь. Довольно освоить центральные представления и определения, ознакомиться со схемой эксперимента, обучиться выводить основополагающие формулы . Безусловно, без крепких математических познаний не обойтись.

3. Выходит, выучите определения физических величин, относящихся к рассматриваемой теме. У всякой величины есть свой физический толк, тот, что вы обязаны понимать. Скажем, 1 кулон – это заряд, проходящий через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.

4. Уясните физику рассматриваемого процесса. Какими параметрами он описывается, и как эти параметры меняются на протяжении времени? Зная основные определения и понимая физику процесса, легко получить простейшие формулы . Как водится, между величинами либо квадратами величин устанавливаются прямо пропорциональные либо обратно пропорциональные зависимости, вводится показатель пропорциональности.

5. Путем математических реформирований дозволено из первичных формул вывести вторичные. Если вы обучитесь делать это легко и стремительно, последние дозволено будет не запоминать. Стержневой способ реформирований – способ подстановки: какая-нибудь величина выражается из одной формулы и подставляется в иную. Главно лишь, дабы эти формулы соответствовали одному и тому же процессу либо явлению.

6. Также уравнения дозволено складывать между собой, разделять, перемножать. Функции по времени дюже зачастую интегрируют либо дифференцируют, получая новые зависимости. Логарифмирование подойдет для степенных функций. При итоге формулы опирайтесь на итог, тот, что вы хотите в результате получить.

Каждая человеческая жизнь окружена большинством разновидных явлений. Ученые-физики занимаются постижением этих явлений; их инструментарием выступают математические формулы и достижения предшественников.

Природные явления

Изучение природы помогает умней относиться к имеющимся источникам, открывать новые источники энергии. Так, геотермальные источники обогревают примерно всю Гренландию. Само слово «физика» восходит к греческому корню «физис», что обозначает «природа». Таким образом, сама физика – наука о природе и природных явлениях.

Вперед, в грядущее!

Часто физики в прямом смысле «опережают время», открывая законы, которые находят использование лишь десятками лет (и даже столетиями) позднее. Никола Тесла открывал законы электромагнетизма, которые находят использование в наши дни. Пьер и Мария Кюри открыли радий фактически без поддержки, в невероятных для современного ученого условиях. Их открытия помогли спасти десятки тысяч жизней. Теперь физики каждого мира сосредоточены на вопросах Вселенной (макрокосмос) и мельчайших частиц вещества (нанотехнологии, микрокосмос).

Понимание мира

Важнейшим мотором общества является любознательность. Вот отчего эксперименты в Большом Андронном Коллайдере имеют такую высокую важность и спонсируются союзом из 60 государств. Имеется настоящая вероятность раскрыть тайны общества.Физика – наука фундаментальная. Это значит, что всякие открытия физики дозволено применять в иных сферах науки и техники. Небольшие открытия в одной ветви могут поразительно повлиять на всю «соседнюю» ветвь целиком. В физике знаменита практика изыскания группами ученых из различных стран, принята политика помощи и сотрудничества.Тайна мироздания, материи волновала великого физика Альберта Эйнштейна. Он предложил теорию относительности, поясняющую, что поля гравитации искривляют пространство и время. Апогеем теории стала известная формула E = m * C * C, объединяющая энергию с массой.

Союз с математикой

Физика опирается на новейшие математические инструменты. Нередко математики открывают абстрактные формулы, выводя новые уравнения из существующих, применяя больше высокие ярусы абстракции и законы логики, делая храбрые догадки. Физики следят за становлением математики, и изредка научные открытия абстрактной науки помогают пояснять незнакомые дотоле природные явления.Бывает и напротив – физические открытия толкают математиков на создание догадок и нового логичного агрегата. Связь физики и математики – одной из важнейших научных дисциплин подкрепляет авторитет физики.

Воспользовавшись записью первого начала термодинамики в дифференциальной форме (9.2), получим выражение для теплоёмкости произвольного процесса:

Представим полный дифференциал внутренней энергии через частные производные по параметрам и :

После чего формулу (9.6) перепишем в виде

Соотношение (9.7) имеет самостоятельное значение, поскольку определяет теплоёмкость в любом термодинамическом процессе и для любой макроскопической системы, если известны калорическое и термическое уравнения состояния.

Рассмотрим процесс при постоянном давлении и получим общее соотношение между и .

Исходя из полученной формулы, можно легко найти связь между теплоемкостями и в идеальном газе. Этим мы и займемся. Впрочем, ответ уже известен, мы его активно использовали в 7.5.

Уравнение Роберта Майера

Выразим частные производные в правой части уравнения (9.8), с помощью термического и калорического уравнений, записанных для одного моля идеального газа. Внутренняя энергия идеального газа зависит только от температуры и не зависит от объёма газа, следовательно

Из термического уравнения легко получить

Подставим (9.9) и (9.10) в (9.8), тогда

Окончательно запишем

Вы, надеюсь, узнали (9.11). Да, конечно, это уравнение Майера. Еще раз напомним, что уравнение Майера справедливо только для идеального газа.

9.3. Политропические процессы в идеальном газе

Как отмечалось выше первое начало термодинамики можно использовать для вывода уравнений процессов, происходящих в газе. Большое практическое применение находит класс процессов, называемых политропическими. Политропическим называется процесс, проходящий при постоянной теплоемкости .

Уравнение процесса задается функциональной связью двух макроскопических параметров, описывающих систему. На соответствующей координатной плоскости уравнение процесса наглядно представляется в виде графика - кривой процесса. Кривая, изображающая политропический процесс, называется политропой. Уравнение политропического процесса для любого вещества может быть получено на основе первого начала термодинамики с использованием его термического и калорического уравнений состояния. Продемонстрируем, как это делается на примере вывода уравнения процесса для идеального газа.

Вывод уравнения политропического процесса в идеальном газе

Требование постоянства теплоёмкости в процессе позволяет записать первое начало термодинамики в виде

Используя уравнение Майера (9.11) и уравнение состояния идеального газа, получаем следующее выражение для


Разделив уравнение (9.12) на T и подставив в него (9.13) придем к выражению

Разделив () на , находим

Интегрированием (9.15), получаем

Это уравнение политропы в переменных

Исключая из уравнения () , с помощью равенства получаем уравнение политропы в переменных

Параметр называется показателем политропы, который может принимать согласно () самые разные значения, положительные и отрицательные, целые и дробные. За формулой () скрывается множество процессов. Известные вам изобарный, изохорный и изотермический процессы являются частными случаями политропического.

К этому классу процессов относится также адиабатный или адиабатический процесс . Адиабатным называется процесс, проходящий без теплообмена (). Реализовать такой процесс можно двумя способами. Первый способ предполагает наличие у системы теплоизолирующей оболочки, способной изменять свой объем. Второй – заключается в осуществлении столь быстрого процесса, при котором система не успевает обмениваться количеством теплоты с окружающей средой. Процесс распространения звука в газе можно считать адиабатным благодаря его большой скорости.

Из определения теплоемкости следует, что в адиабатическом процессе . Согласно

где – показатель адиабаты.

В этом случае уравнение политропы принимает вид

Уравнение адиабатного процесса (9.20) называют также уравнением Пуассона, поэтому параметр часто именуют постоянной Пуассона. Постоянная является важной характеристикой газов. Из опыта следует, что ее значения для разных газов лежат в интервале 1,30 ÷ 1,67, поэтому на диаграмме процессов адиабата «падает» более круто, чем изотерма.

Графики политропических процессов для различных значений представлены на рис. 9.1.

На рис. 9.1 графики процессов пронумерованы в соответствии с табл. 9.1.

В каждой задаче по физике требуется из формулы выразить неизвестную, следующим шагом подставить численные значения и получить ответ, в некоторых случаях необходимо только выразить неизвестную величину. Способов выведения неизвестной из формулы много. Если посмотреть страницы Интернета, то мы увидим множество рекомендаций по этому поводу. Это говорит о том, что единого подхода к решению этой проблемы научное сообщество еще не выработало, а те способы, которые используются, как показывает опыт работы в школе – все они малоэффективны. До 90% учащихся выпускных классов не умеют правильно выразить неизвестное. Те же, кто умеют это делать – выполняют громоздкие преобразования. Очень странно, но физики, математики, химики имеют разные подходы, объясняя методы переноса параметров через знак равенства (предлагают правила треугольника, креста или пропорций др.) Можно сказать, что имеют разную культуру работы с формулами. Можно представить, что происходит с большинством учеников, которые встречается с разными трактовками решения данной проблемы, последовательно посещая уроки этих предметов. Эту ситуацию описывает типичный диалог в сети:

Научите выражать из формул величины. 10 класс, мне стыдно не знать, как из одной формулы делать другую.

Да не переживай - это проблема многих моих одноклассников, хоть я и в 9 кл. Учителя показывают это чаще всего методом треугольника, но мне кажется, что это неудобно, да и запутаться легко. Покажу наиболее простой способ, которым я пользуюсь...

Допустим, дана формула:

Ну более простая....тебе из этой формулы нужно найти время. Ты берешь и в эту формулу подставляешь числа только разные, исходя из алгебры. Допустим:

и тебе наверное хорошо видно, что чтобы найти время в алгебраическом выражении 5 нужно 45/9 т.е переходим к физике: t=s/v

У большинства учащихся формируется психологический блок. Часто учащиеся отмечают, что при чтении учебника трудности в первую очередь вызывают те фрагменты текста, в которых много формул, что «длинные выводы все равно не понять», но при этом возникает чувство неполноценности, неверия в свои силы.

Я, предлагаю следующее решение данной проблемы – большинство учащихся все - таки могут решать примеры и, следовательно, расставлять порядок действий. Используем это их умение.

1. В той части формулы, где содержится переменная, которую нужно выразить, надо расставь порядок действий, причем в одночленах, не содержащих искомую величину этого делать не будем.

2. Затем в обратной последовательности вычислений перенесите элементы формулы в другую часть формулы (через знак равенства) с противоположным действием (« минус» - «плюс», «разделить» - « умножить», « возведение в квадрат» – «извлечение корня квадратного»).

То есть найдем в выражении последнее действие и перенесем одночлен или многочлен, исполняющий это действие, через знак равенства первым, но уже с противоположным действием. Таким образом, последовательно, находя последнее действие в выражении, перенесите из одной части равенства в другую все известные величины. В заключение перепишем формулу так, чтобы неизвестная переменная стояла слева.

Получаем четкий алгоритм работы, точно знаем, сколько преобразований необходимо выполнить. Можем для тренировки использовать уже известные формулы, можем выдумывать свои. Для начала работы над усвоением данного алгоритма была создана презентация.

Опыт работы с учащимися показывает, что данный способ хорошо воспринимается ими. Реакция учителей на мое выступление на фестивале «Учитель профильной школы» также говорит о положительном зерне, заложенном в этой работе.

Способов выведения неизвестной из формулы много, но как показывает опыт работы – все они малоэффективны. Причина: 1. До 90% учащихся выпускных классов не умеют правильно выразить неизвестное. Те же, кто умеют это делать – выполняют громоздкие преобразования. 2. Физики, математики, химики – люди, которые говорят на разных языках, объясняя методы переноса параметров через знак равенства (предлагают правила треугольника, креста и др.) В статье рассмотрен простой алгоритм, позволяющий в один прием , без многократного переписывания выражения сделать вывод искомой формулы. Его можно мысленно сравнить с раздеванием человека (справа от равенства) в шкаф (слева): нельзя снять рубашку, не снимая пальто или: то, что первым одевают, последним снимают.

Алгоритм:

1. Записать формулу и разобрать прямой порядок выполняемых действий, последовательность вычислений: 1) возведение в степень, 2) умножение – деление, 3) вычитание – сложение.

2. Записать: (неизвестное) = (переписать обратную часть равенства) (одежда в шкафу (слева от равенства) осталась на месте).

3. Правило преобразования формул: последовательность переноса параметров через знак равенства определяется обратной последовательностью вычислений . Найти в выражении последнее действие и перенести его через знак равенства первым . Поэтапно, находя последнее действие в выражении, перенести сюда из другой части равенства (одежду с человека) все известные величины. В обратной части равенства выполняются обратные действия (если брюки снимают - «минус», то в шкаф укладывают - «плюс»).

Пример: hv = hc / λ m + 2 /2

Выразить частоту v :

Порядок действий: 1. v = переписываем правую часть hc / λ m + 2 /2

2. Разделим на h

Итог: v = ( hc / λ m + 2 /2) / h

Выразить υ m :

Порядок действий: 1. υ m = переписать левую часть (hv ); 2. Последовательно переносим сюда с обратным знаком: (- hc m ); (*2 ); (1/ m ); ( или степень 1/2 ).

Почему сначала переносится (- hc m ) ? Это последнее действие в правой части выражения. Поскольку вся правая часть умножается на (m /2 ), то и вся левая часть делится на данный множитель: поэтому ставятся скобки. Первое действие в правой части – возведение в квадрат, переносится в левую часть последним.

Эту элементарную математику с порядком действий при вычислениях каждый ученик отлично знает. Поэтому все учащиеся довольно легко, без многократного переписывания выражения , сразу выводят формулу для вычисления неизвестного.

Итог: υ = (( hv - hc m ) *2/ m ) 0.5 ` (или пишут квадратный корень вместо степени 0,5 )

Выразить λ m :

Порядок действий: 1. λ m = переписать левую часть (hv ); 2.Вычесть ( 2 /2 ); 3. Разделить на (hc ); 4. Возвести в степень (-1 ) (Математики обычно меняют числитель и знаменатель искомого выражения.)