Капиллярные явления. Смачивание и капиллярность. Полные уроки — Гипермаркет знаний. Смачивание и несмачивание

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В своей жизни мы часто сталкиваемся с привычными и обыкновенными вещами. Кто из нас не пользовался бумажными салфетками, бумажными платочками и полотенцами, не рисовал красками в альбоме, не склеивал бумагу и картон? Почему они впитывают влагу и делают это по-разному? От чего это зависит? Эти вопросы меня очень заинтересовали. Это всё связано с явлениями смачиваемости и несмачиваемости, с капиллярными явлениями.

Проблема: от чего зависит различная впитываемость жидкости в различных видах бумажных изделиях? Я самостоятельно решила экспериментально сравнить различные образцы бумажных изделий по качеству впитывания жидкости. Это можно определить, рассчитав диаметр капилляров, пронизывающих бумагу, и высоту поднятия жидкости по этим капиллярам. Поэтому я поставила следующую цель моей работы.

Цель проекта: 1. Знакомство с теорией смачивания и несмачивания, капиллярного явления. 2. Обоснование причин движения жидкости по капиллярам. 3. Исследование капиллярных свойств различных видов бумажных изделий. 4. Экспериментальное доказательство зависимости высоты поднятия жидкости в капиллярах от эффективного диаметра капилляра. 5. Определение качества впитывания жидкости в образцах бумажных изделий.

Задачи проекта: 1. Изучить источники информации по выбранной теме. 2. Углубить знания по теории капиллярного явления. 3. Провести исследования капиллярных свойств различных образцов бумаги для составления зависимости высоты поднятия жидкости в капиллярах от расчетного диаметра капилляра. 4. Обработать и проанализировать полученные в ходе эксперимента результаты. 5. Представить результаты в виде диаграммы. 6. Сделать вывод, отвечающий поставленной цели. 7. Подготовить проект к защите.

Объект исследования: законы и явления физики в изучении теории капиллярных явлений.

Предмет исследования: капиллярные свойства бумаги.

Актуальность темы исследования обусловлена продвижением знаний по вопросам теории капиллярных явлений в постановке проблемы исследования с привлечением внимания общества к вопросам использования привычных нам вещей в нашей жизни.

Новизна: диаграмма измерений зависимости высоты поднятия жидкости в капиллярах от расчетного эффективного диаметра капилляра в различных видах бумажных изделий.

Методы исследования: - теоретический (анализ источников информации); - практический (наблюдение и изучение явления, описывающего результат исследования); - экспериментальный (выполнение измерения, представление результатов измерения в виде таблицы, диаграммы).

Поверхностное натяжение

В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов (бумага, пряжа, кожа, различные строительные материалы, почва, дерево и т.д.). Приходя в соприкосновение с жидкостями, такие тела очень часто впитывают их в себя (Приложение 1). Подобные явления можно также наблюдать в очень узких трубочках, которые называются капиллярами (от лат. capillus - волосок). Происходящее носит название явления капиллярности. Для подробного изучения данного явления рассмотрим силы, лежащие в основе капиллярности. т Сам термин «поверхностное натяжение» подразумевает, что вещество у поверхности находится в «натянутом», то есть напряжённом состоянии, которое объясняется действием силы, называемой внутренним давлением. Она стягивает молекулы внутрь жидкости в направлении, перпендикулярном её поверхности. Так, молекулы, находящиеся во внутренних слоях вещества, испытывают в среднем одинаковое по всем направлениям притяжение со стороны окружающих молекул. Молекулы же поверхностного слоя подвергаются неодинаковому притяжению со стороны внутренних слоёв веществ и со стороны, граничащей с поверхностным слоем среды. Например, на поверхности раздела жидкость - воздух молекулы жидкости, находящиеся в поверхностном слое, сильнее притягиваются со стороны соседних молекул внутренних слоёв жидкости, чем со стороны молекул воздуха (Приложение 2). Это и является причиной различия свойств поверхностного слоя жидкости от свойств её внутренних объёмов. Внутреннее давление обуславливает втягивание молекул, расположенных на поверхности жидкости, внутрь и тем самым стремится уменьшить поверхность до минимальной при данных условиях. Сила, действующая на единицу длины границы раздела, обуславливающая сокращение поверхности жидкости, называется силой поверхностного натяжения или просто поверхностным натяжением. Коэффициент является основной величиной, характеризую-щей свойства поверхности жидкости, и называется коэффициентом поверхностного натяжения .

Сила поверхностного натяжения - сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности. Действие сил поверхностного натяжения приводит к тому, что жидкость в равновесии имеет минимально возможную площадь поверхности. При контакте жидкости с другими телами жидкость имеет поверхность, соответствующую минимуму ее поверхностной энергии. К вызываемым поверхностным натяжением эффектам мы настолько привыкли, что не замечаем их, если не развлекаемся пусканием мыльных пузырей. Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др. При увеличении температуры поверхностное натяжение уменьшается, так как увеличиваются расстояния между молекулами жидкости. На поверхностное натяжение жидкости оказывают влияние и находящиеся в ней примеси. Вещества, ослабляющие поверхностное натяжение, называют поверхностно-активными (ПАВ) - нефтепродукты, спирты, эфир, мыло и др. Некоторые вещества увеличивают поверхностное натяжение - примеси солей и сахара, благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой.

Смачивание

Все знают, что даже маленькая капля воды растекается по чистой поверхности стеклянной пластинки. В то же время капля воды на парафинированной пластинке, как и на поверхности листьев некоторых растений, не растекается, а имеет почти правильную форму шара. Жидкость, которая растекается тонкой плёнкой по твёрдому телу, называют смачивающей данное твёрдое тело. Жидкость, которая не растекается, а стягивается в каплю, называют несмачивающей это тело (Приложение 3). Чем же объяснить явления смачиваемости и несмачиваемости?

Явление смачиваемости и несмачиваемости

Рассмотрим каплю жидкости на поверхности твёрдого тела (Приложение 4). Линия, ограничивающая поверхность капли на пластинке является границей поверхностей трёх тел: жидкости, твёрдого тела и газа. Поэтому в процессе установления равновесия капли жидкости на границе этих тел будут действовать три силы: сила поверхностного натяжения жидкости на границе с газом, сила поверхностного натяжения жидкости на границе с твёрдым телом, сила поверхностного натяжения твёрдого тела на границе с газом. Будет ли жидкость растекаться по поверхности твёрдого тела, вытесняя с него газ, или, наоборот, соберётся в каплю, зависит от соотношения величин этих сил. Всякая жидкость, освобождённая от действия силы тяжести, принимает свою естественную форму - шарообразную. Падая, капли дождя принимают форму шариков, дробинки - это застывшие капли расплавленного свинца. Необходимо отметить, что именно скорость изменения диаметра пятна, образованного каплей жидкости, нанесённой на чистую поверхность материала, используется в качестве основной характеристики смачивания в капиллярах. Её величина зависит как от поверхностных явлений, так и от вязкости жидкости, её плотности, летучести. Более вязкая жидкость с прочими одинаковыми свойствами дольше растекается по поверхности и медленнее протекает по капиллярному каналу.

Значение смачивания

Мы знаем, что мыть руки лучше тёп-лой водой и с мылом. У воды до-ста-точ-но боль-шой ко-эф-фи-ци-ент по-верх-ност-но-го на-тя-же-ния, зна-чит, холодная вода будет плохо сма-чи-вать ла-до-ни. Для того чтобы умень-шить ко-эф-фи-ци-ент по-верх-ност-но-го на-тя-же-ния воды, мы уве-ли-чи-ва-ем тем-пе-ра-ту-ру воды (с уве-ли-че-ни-ем тем-пе-ра-ту-ры воды ко-эф-фи-ци-ент по-верх-ност-но-го на-тя-же-ния умень-ша-ет-ся), и используем мыло, ко-то-рое со-дер-жит по-верх-ност-но ак-тив-ные ве-ще-ства, силь-но умень-ша-ю-щие ко-эф-фи-ци-ент по-верх-ност-но-го на-тя-же-ния воды. Эф-фек-ты сма-чи-ва-ния так же ра-бо-та-ют при скле-и-ва-нии де-ре-вян-ных, ре-зи-но-вых, бу-маж-ных и дру-гих по-верх-но-стей и ос-но-ва-ны на вза-и-мо-дей-ствии между мо-ле-ку-ла-ми жид-ко-сти и мо-ле-ку-ла-ми твер-до-го тела. Любой клей в первую оче-редь дол-жен сма-чи-вать скле-и-ва-ю-щие по-верх-но-сти. Пайка тоже свя-за-на со свой-ства-ми сма-чи-ва-ния. Чтобы рас-плав-лен-ный при-пой (сплав олова и свин-ца) хо-ро-шо рас-те-кал-ся по по-верх-но-сти спа-и-ва-е-мых ме-тал-ли-че-ских пред-ме-тов, нужно эти по-верх-но-сти тща-тель-но очи-щать от жира, пыли и ок-си-дов. При-ме-ром при-ме-не-ния сма-чи-ва-ния в живой при-ро-де могут слу-жить перья во-до-пла-ва-ю-щих птиц. Эти перья все-гда сма-за-ны жи-ро-вы-ми вы-де-ле-ни-я-ми из желез, что при-во-дит к тому, что перья этих птиц не сма-чи-ва-ют-ся водой и не промокают (Приложение 5).

Капиллярные явления

Дей-ствие по-верх-ност-но-го на-тя-же-ния и эф-фек-тов сма-чи-ва-ния про-яв-ля-ет-ся в ка-пил-ляр-ных яв-ле-ни-ях - дви-же-нии жид-ко-сти по тон-ким труб-кам. Капиллярные явления - это явления подъёма или опускания жидкости в капиллярах, заключающиеся в способности жидкостей изменять уровень в трубках малого диаметра, узких каналах произвольной формы и пористых телах.

Капилляры

Об-ра-ти-те вни-ма-ние на то, как рас-пре-де-ля-ет-ся жид-кость в со-су-дах раз-лич-ной тол-щи-ны: в тон-ких со-су-дах жид-кость под-ни-ма-ет-ся выше (Приложение 6). За-ме-тим, что сма-чи-ва-ю-щая жид-кость будет под-ни-мать-ся по ка-пил-ля-ру, а несма-чи-ва-ю-щая - опус-кать-ся (Приложение 7). Из-вест-но, что в слу-ча-ях пол-но-го сма-чи-ва-ния или несма-чи-ва-ния ме-ниск - искривлённая поверхность жидкости - в узких труб-ках пред-став-ля-ет собой по-лу-сфе-ру, диаметр ко-то-рой равен диаметру ка-на-ла труб-ки (Приложение 8). Вдоль гра-ни-цы по-верх-но-сти жид-ко-сти, име-ю-щей форму окруж-но-сти, на жид-кость со сто-ро-ны сте-нок труб-ки дей-ству-ет сила по-верх-ност-но-го на-тя-же-ния, на-прав-лен-ная вверх, в слу-чае сма-чи-ва-ю-щей жид-ко-сти, и вниз, в слу-чае несма-чи-ва-ю-щей. Эта сила за-став-ля-ет жид-кость под-ни-мать-ся (или опус-кать-ся) в узкой труб-ке.

Высота поднятия жидкости в капиллярных трубках

Капиллярные явления обусловлены двумя разнонаправленными силами: сила тяжести Fт заставляет жидкость опускаться вниз; сила поверхностного натяжения Fн двигает воду вверх. Субстанция прекратит подниматься при условии, что Fт = Fн. Подъ-ем/опускание жид-ко-сти по ка-пил-ля-ру оста-но-вит-ся тогда, когда сила по-верх-ност-но-го на-тя-же-ния урав-но-ве-сит-ся силой тя-же-сти, дей-ству-ю-щей на столб под-ня-той жид-ко-сти (Приложение 9). Вы-со-та, на которую под-ни-мет-ся сма-чи-ва-ю-щая жид-кость в ка-пил-ляр-ной труб-ке, преодолевая силу тяжести, рассчитывается по формуле (3.2.1):

Н/м ; - плот-ность жид-ко-сти, кг/м 3 9,8 м/с 2 м ; - радиус капилляра, м;d - диаметр капилляра, м .

Фор-му-ла для вы-со-ты, на ко-то-рую опу-стит-ся несма-чи-ва-ю-щая жид-кость капилляр, будет такой же. Жидкости, смачивающие материал, из которого сделан капилляр, будут в нем подниматься (вода / стекло). И наоборот: жидкости, не смачивающие капилляр, будут в нем опускаться (стекло / ртуть). Кроме того, высота подъема или опускания жидкости зависит от толщины трубки: чем тоньше капилляр, тем больше высота поднятия или опускания жидкости. На высоту влияют также плотность жидкости и её коэффициент поверхностного натяжения (Приложение 10). Важно, что если капилляр наклонён к поверхности жидкости, то высота поднятия жидкости от величины угла наклона не зависит. Как бы не располагались капилляры в структуре (строго вертикально, под углом к вертикали или с разветвлениями), высота поднятия жидкости будет зависеть только от ------, и (или d ) (Приложение 11).

Роль капиллярных явлений в природе, быту и технике

Явление капиллярности играет огромную роль в самых разнообразных процессах, окружающих нас. Самый рас-про-стра-нен-ный при-мер ка-пил-ляр-но-го яв-ле-ния - это прин-цип ра-бо-ты обык-но-вен-но-го по-ло-тен-ца или бу-маж-ной сал-фет-ки. Вода с рук ухо-дит на по-ло-тен-це или бу-маж-ную сал-фет-ку за счет подъ-ема жид-ко-сти по тон-ким во-лок-нам, из ко-то-рых они со-сто-ят. Без капиллярных явлений существование живых организмов просто невозможно. Подъём питательного вещества по стеблю или стволу растения обусловлен явлением капиллярности: питательный раствор поднимается по тонким капиллярным трубкам, образованными стенками растительных клеток.

Следует учитывать и капиллярность почвы, ведь она также пронизана множеством мелких каналов, по которым вода поднимается из глубинных слоёв почвы в поверхностные. Пчёлы, бабочки извлекают нектар из глубин цветка посредством очень тонкой капиллярной трубки, находящейся внутри пчелиного хоботка.

Большинство растительных и животных тканей пронизано громадным числом капиллярных сосудов. Именно в капиллярах происходят основные процессы, связанные с питанием и дыханием организма. Кровеносные сосуды - это капилляры, по которым течет кровь. Причем, чем дальше от сердца идут сосуды, тем тоньше они становятся.

Стро-и-те-лям при-хо-дит-ся учи-ты-вать подъ-ем влаги из почвы по порам стро-и-тель-ных ма-те-ри-а-лов. Если этого не учесть, то стены зда-ний от-сы-ре-ют. Для за-щи-ты фун-да-мен-та и стен от таких вод ис-поль-зу-ют гид-ро-изо-ля-цию. По капиллярам фитиля поднимаются горючие и смазочные вещества. Топ-ли-во по-сту-па-ет по фи-ти-лю за счет дви-же-ния по во-лок-нам фи-ти-ля, как по ка-пил-ляр-ным труб-кам. Промокание одежды во время дождя, к примеру, брюк до самых колен от ходьбы по лужам также обязано капиллярным явлениям. Вокруг нас множество примеров этого природного феномена (Приложение 12).

Эксперимент

«Исследование капиллярных свойств различных образцов бумажных изделий»

Цель эксперимента: доказать, что высота поднятия жидкости в капиллярах зависит от диаметра капилляра. Оборудование и материалы: ёмкость с водой, термометр, линейка измерительная, карандаш, зажим, набор бумажных образцов: платочек бумажный однослойный, салфетка бумажная, тетрадный лист, офисная бумага, пергаментная бумага, полотенце бумажное, акварельный лист (Приложение 13). Ход работы: 1. Из набора бумажных изделий приготовила образцы для исследования. Для этого вырезала полоски длиной 10 см и шириной 2 см и пронумеровала (Приложение 14). На расстоянии 2 см от одного конца образца провела линию. 2. Взяла ёмкость с водой и по очереди опускала образцы в воду, так чтобы уровень воды совпадал с проведенной линией (Приложение 15). 3. Как только прекратился подъём воды, образец вынула и измерила высоту поднятия жидкости от прочерченной линии до сухого участка. Такой опыт я провела с каждым образцом (Приложение 16). 4. Полученные данные анализа занесла в таблицу (Приложение 17). 5. Диаметр капилляров каждого их этих образцов определила расчетным путём. Для этого из формулы высоты поднятия жидкости в капиллярах (4.1) выразила формулу для нахождения диаметра капилляра (4.2):

где ------- ко-эф-фи-ци-ент по-верх-ност-но-го на-тя-же-ния, Н/м ; - плот-ность жид-ко-сти, кг/м 3 ; - уско-ре-ние сво-бод-но-го па-де-ния, 9,8 м/с 2 ; - высота столбика поднятой жидкости, м ; - радиус капилляра, м;d - диаметр капилляра, м .

При этом образцы каждый раз опускала в водопроводную воду, температура которой составляла 20 0 С (Приложение 18), то есть жидкость имела постоянную плотность = 1000 кг/м3 , коэффициент поверхностного натяжения = 0,073 Н⁄м . Полученные данные занесла в таблицу (Приложение 17). Вывод: из таблицы следует, что все бумажные образцы впитывают воду, что указывает на наличие капилляров.

Впитываемость бумаги

Но правдоподобны ли рассчитанные величины диаметров в образцах? Толщина сухой бумаги представленных образцов от 0,1 мм до 0,3 мм . В воде капилляры расправятся и наполнятся водой - бумага станет толще, но и в этом случае её толщина станет не более 0,5 мм . О чём свидетельствует такое несоответствие? Капилляры не сплошные, а прерывающиеся (Приложение 19).

Важным свойством бумаги является впитываемость. Бумага - капиллярно-пористое тело, состоящее из твёрдых частиц или агрегатов частиц, пространство между которыми представляет собой капилляры. Так как бумага - продукт промышленной переработки целлюлозы, то невозможно обеспечить строгое постоянство диаметра капилляров. Поэтому говорят об эффективном (среднем) диаметре капилляров. Многие виды бумаги отличаются повышенной впитывающей способностью к различным жидкостям. Жидкость впитывается в толщу листа, расходится и проходит на её обратную сторону. Такая бумага обладает яркими гидрофильными свойствами. В первую очередь это относится к классу промокательных и фильтровальных бумаг различного назначения, такие как образцы под номерами 1,2,6. Эта бумага имеет самые тонкие капилляры и впитывает воду лучше всего. Придание бумаги ограниченных впитывающих свойств по отношению к жидкостям (вода, чернила) называют проклейкой.

Такая бумага из очень тщательно размолотой бумажной массы, где начинает сказываться образование частично растворимых, деструктированных продуктов целлюлозы, дающих в разной выраженности монолитные плёнки, перекрывающие поры и имеющие более высокую устойчивость к проникновению жидкости. Это относится к классу упаковочной бумаги, как образец под номером 5, также к классу бумаг для письма и рисования, как образцы под номерами 3,4,7. Поэтому в данном эксперименте я рассматриваю капиллярный эффект только образцов под номерами 1,2,6, продукция которых имеет повышенную впитывающую способность.

Диаграмма измерений

На основании полученных данных я построила диаграмму измерений зависимости высоты поднятия жидкости в капиллярах от расчетного эффективного диаметра капилляра (Приложение 20).

Вывод: смачивающие жидкости по капиллярам поднимаются, преодолевая силу тяжести, на высоту, зависящую от коэффициента поверхностного натяжения жидкости, плотности жидкости и диаметра капилляра. Чем меньше диаметр капилляра, тем выше поднимается жидкость по капилляру. Наилучшее качество впитывания у образца с меньшим диаметром капилляра. Наилучшее качество впитывания имеет платочек бумажный.

Заключение

В результате своей исследовательской работы я:

1. Углубила свои знания по явлениям смачиваемости и несмачиваемости, капиллярным явлениям, которые широко распространены как в нашей повседневной деятельности, так и в природе.

2. Научилась выводить формулу диаметра капилляра по высоте поднятия жидкости и вычислять по формуле эффективный (средний) диаметр капилляра.

3. Доказала зависимость высоты поднятия жидкости в капиллярах от расчетного диаметра капилляра.

4. Узнала, что капиллярные явления зависят от силы взаимодействия молекул внутри жидкости и от силы взаимодействия молекул твердого тела с молекулами жидкости; чем меньше диаметр капилляра, тем выше поднимается вода по капилляру.

5. Сравнила образцы бумажных изделий на предмет качества впитывания жидкости и отметила, что наилучшее качество впитывания у образца с меньшим диаметром капилляра.

6. Усовершенствовала в процессе своей работы личностные качества:

    усидчивость;

    наблюдательность;

    способность работать с большим количеством информации;

    стремление к саморазвитию.

Приобрела:

    нацеленность на результат;

    системность мышления;

    аналитические способности.

7. Достигла решения проблемы с помощью поставленной цели и задач.

Моя работа мне понравилась, я довольна своим результатом. Мои исследования могут быть использованы на уроках физики при изучении темы «Капиллярные явления», на занятиях по биологии в вопросах о капиллярных явлениях в организме человека, а так же в усовершенствовании знаний по химии в изучении вопросов конденсации или коллоидной химии.

Список литературы

1. Васюков В.И. Физика. Основные формулы, законы: Справочное пособие. - М.: Ориентир, 2006

2. Пёрышкин А.В. Курс физики: Учебник для средней школы / В трех частях.- М.: Учпедгиз, 1965

3. Бумага, её структура, состав, классификация, области применения и свойства (http://material.osngrad.info)

4. Капиллярные эффекты (http://www.studopedia.ru)

5. Капиллярные явления (http://www.booksite.ru)

6. Поверхностное натяжение (http://www.mirznanii.com)

7. Смачивание и капиллярность (http://phscs.ru)

Приложения

Приложение 1

Листовая пластина Кровеносные сосуды Фильтровальная бумага

Приложение 2

Приложение 3

Приложение 4

Приложение 5

Приложение 6

Приложение 7

Ртуть Вода

Приложение 8

Приложение 9

Приложение 10

Приложение 11

Приложение 12

Приложение 13

Приложение 14

Нумерация образцов бумажных изделий

Приложение 15

Приложение 16

Приложение 17

Расчетные данные бумажных образцов

Наименование бумажного образца

Высота поднятия жидкости, мм

Рассчитанный по формуле средний (эффективный) диаметр капилляра, мм

№1 Платочек бумажный однослойный

№2 Салфетка бумажная

№3 Тетрадный лист

№4 Офисная бумага

№5 Пергаментная бумага

№6 Полотенце бумажное

№7 Акварельная бумага

Приложение 18

Приложение 19

Капилляры сплошные и прерывающиеся

Приложение 20

Пар) при наличии искривления поверхности. Частный случай поверхностных явлений.

При отсутствии силы тяжести жидкость ограниченной массы под воздействием поверхностного натяжения стремится занять объём с минимальной поверхностью, т. е. принимает форму шара. В условиях действия силы тяжести не слишком вязкая жидкость достаточной массы принимает форму сосуда, в который налита, и её свободная поверхность при относительно большой площади (вдали от стенок сосуда) становится плоской, так как роль поверхностного натяжения менее существенна, чем силы тяжести. При взаимодействии с поверхностью другой жидкости или твёрдого тела (например, со стенками сосуда) поверхность рассматриваемой жидкости искривляется в зависимости от наличия или отсутствия смачивания. Если имеет место смачивание, т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с молекулами поверхности 3, чем с молекулами другой жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость 1 поднимается по стенке сосуда - участок жидкости, примыкающий к стенке, искривляется. Давление, вызываемое подъёмом жидкости, уравновешивается капиллярным давлением ∆р - разностью давлений над и под искривлённой поверхностью раздела. Величина капиллярного давления зависит от среднего радиуса r кривизны поверхности и определяется формулой Лапласа: ∆р = 2σ/r, где σ - поверхностное натяжение. Если граница раздела фаз плоская (r = ∞), то в условиях механического равновесия системы давления с обеих сторон границы раздела равны и ∆р = 0. В случае вогнутой поверхности жидкости (r < 0) давление в жидкости ниже, чем давление в граничащей с ней фазе и ∆р < 0; для выпуклой поверхности (r > 0) ∆р > 0.

Если стенки сосуда приблизить друг к другу, зоны искривления поверхности жидкости образуют мениск - полностью искривлённую поверхность. Образовавшаяся система называется капилляром; в нём в условиях смачивания давление под мениском понижено и жидкость в капилляре поднимается (над уровнем свободной поверхности жидкости в сосуде); вес столба жидкости высотой h уравновешивает капиллярное давление ∆р. Несмачивающая жидкость в капилляре образует выпуклый мениск, давление над которым выше, и жидкость в нём опускается ниже уровня свободной поверхности вне капилляра. Высота поднятия (опускания) жидкости в капилляре относительно свободной поверхности (где r = ∞ и ∆р = 0) определяется соотношением: h = 2σcosθ/∆pgr, где θ - краевой угол (угол между касательной к поверхности мениска и стенкой капилляра), ∆р - разность плотностей жидкости 1 в капилляре и внешней среды 2, g - ускорение свободного падения.

Искривление поверхности влияет на условия равновесия между жидкостью и её насыщенным паром: согласно Кельвина уравнению, давление паров над каплей жидкости повышается с уменьшением её радиуса, что объясняет, например, рост больших капель в облаках за счёт малых.

К характерным капиллярным явлениям относятся капиллярное впитывание, появление и распространение капиллярных волн, капиллярное передвижение жидкости, капиллярная конденсация, процессы испарения и растворения при наличии искривлённой поверхности. Капиллярное впитывание характеризуется скоростью, зависящей от капиллярного давления и вязкости жидкости. Оно играет существенную роль в водоснабжении растений, движении воды в почвах и других процессах, связанных с движением жидкостей в пористых средах. Капиллярная пропитка - один из распространённых процессов химической технологии. В системах с непараллельными стенками (или капиллярах конического сечения) кривизна менисков зависит от расположения в них граничных поверхностей жидкости, и капля смачивающей жидкости в них начинает двигаться к мениску с меньшим радиусом (рис. 2), т. е. в ту сторону, где давление ниже. Причиной капиллярного передвижения жидкости может служить и разница сил поверхностного натяжения в менисках, например при существовании градиента температуры или при адсорбции поверхностно-активных веществ, снижающих поверхностное натяжение.

Капиллярной конденсацией называют процесс конденсации пара в капиллярах и микротрещинах пористых тел, а также в промежутках между сближенными твёрдыми частицами или телами. Необходимое условие капиллярной конденсации - наличие смачивания поверхности тел (частиц) конденсирующейся жидкостью. Процессу капиллярной конденсации предшествует адсорбция молекул пара поверхностью тел и образование менисков жидкости. В условиях смачивания форма менисков вогнутая и давление р насыщенного пара над ними ниже, чем давление насыщенного пара р 0 при тех же условиях над плоской поверхностью. Т. е. капиллярная конденсация происходит при более низких, чем р 0 , давлениях.

Искривление поверхности жидкости может существенно влиять на процессы испарения, кипения, растворения, зародышеобразования при конденсации пара и кристаллизации. Так, свойства систем, содержащих большое количество капель или пузырьков газа (эмульсий, аэрозолей, пен), и их формирование во многом определяются капиллярными явлениями. Они лежат также в основе многих технологических процессов: флотации, спекания порошков, вытеснения нефти из пластов водными растворами поверхностно-активных веществ, адсорбционного разделения и очистки газовых и жидких смесей и т. п.

Впервые капиллярные явления были исследованы Леонардо да Винчи. Систематического наблюдения и описания капиллярные явления в тонких трубках и между плоскими, близко расположенными стеклянными пластинами провёл в 1709 Ф. Хоксби, демонстратор Лондонского королевского общества. Основы теории капиллярных явлений заложены в трудах Т. Юнга, П. Лапласа, а их термодинамическое рассмотрение осуществил Дж. Гиббс (1876).

Лит.: Адамсон А. Физическая химия поверхностей. М., 1979; Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М., 1986.

А. М. Емельяненко, Н.В. Чураев.

При смачивании возникает искривление поверхности, изменяющее свойства поверхностного слоя. Существование избытка свободной энергии у искривленной поверхности приводит к так называемым капиллярным явлениям - весьма своеобразным и важным.

Проведем сначала качественное рассмотрение на примере мыльного пузыря. Если мы в процессе выдувания пузыря откроем конец трубочки, то увидим, что пузырь, находящийся на ее конце, будет уменьшатся в размерах и втянется в трубку. Поскольку воздух с открытого конца сообщался с атмосферой, постольку для поддержания равновесного состояния мыльного пузыря необходимо чтобы давление внутри было больше, чем внешнее. Если при этом соединить трубочку с монометром, то на нем регистрируется некоторая разность уровней - избыточное давление DР в объемной фазе газа с вогнутой стороны поверхности пузыря.

Установим количественную зависимость между DР и радиусом кривизны поверхности 1/r между двумя объемными фазами, находящимися в состоянии равновесия и разделенными сферической поверхностью. (например пузырек газа в жидкости или капля жидкости в фазе пара). Для этого используем общее термодинамическое выражение для свободной энергии при условии Т = const и отсутствии переноса вещества из одной фазы в другую dn i = 0. В состоянии равновесия возможны вариации поверхности ds и объема dV. Пусть V увеличится на dV, а s - на ds. Тогда:

dF = - P 1 dV 1 - P 2 dV 2 + sds.

В состоянии равновесия dF = 0. С учетом того, что dV 1 = dV 2 , находим:

P 1 - P 2 = s ds/dV.

Т.о P 1 > P 2 . Учитывая, что V 1 = 4/3 p r 3 , где r - радиус кривизны, получаем:

Подстановка дает уравнение Лапласа:

P 1 - P 2 = 2s/r. (1)

В более общем случае для элипссоида вращения с главными радиусами кривизны r 1 и r 2 , закон Лапласа формулируется:

P 1 - P 2 = s/(1/R 1 - 1/R 2).

При r 1 = r 2 получаем (1), при r 1 = r 2 = ¥ (плоскость) P 1 = P 2 .

Разность DР называют капиллярным давлением. Рассмотрим физический смысл и следствия из закона Лапласа, являющегося основой теорий капиллярных явлений.Уравнение показывает, что разность давлений в объемных фазах возрастает с увеличением s и с уменьшением радиуса кривизны. Таким образом, чем выше дисперсность, тем больше внутренее давление жидкости со сферической поверхностью. Например для капли воды в фазе пара при r = 10 -5 см, DР = 2 . 73 . 10 5 дин/см 2 »15 ат. Таким образом давление внутри капли по сравнению с паром оказывается на 15 ат выше, чем в фазе пара. Необходимо помнить, что независимо от агрегатного состояния фаз, в состоянии равновесия давление с вогнутой стороны поверхности всегда больше, чем с выпуклой.Уранение дает основу для экспериментального измерения s методом наибольшего давления пузырьков. Одно из важнейших следствий существования капиллярного давления - поднятие жидкости в капилляре.



Капиллярные явления наблюдаются в содержащих жидкость

В узких сосудах, у которых расстояние между стенками соизмеримо с радиусом кривизны поверхности жидкости. Кривизна возникает в результате взаимодействия жидкости со стенками сосуда. Специфика поведения жидкости в капиллярных сосудах зависит от того, смачивает или несмачивает жидкость стенки сосуда, точнее от значения краевого угла смачивания.

Рассмотрим положение уровней жидкостей в двух капиллярах, один из которых имеет лиофильную поверхность и поэтому стенки его смачиваются, а у другого поверхность лиофобизирована и не смачивается. В первом капилляре поверхность имеет отрицательную кривизну. Дополнительное давление Лапласа стремится растянуть жидкость. (давление направлено к центру кривизны). Давление под поверхъностью понижено по сравнению с давлением у плоской поверхности. В результате возникает выталкивающая сила, поднимающая жидкость в капилляре до тех пор, пока вес столба не уравновесит действующую силу.Во втором капилляре кривизна поверхности положительная, дополнительное давление направлено внутрь жидкости, в результате жидкость в капилляре опускается.

При равновесии лапласовское давление равно гидростатическому давлению столба жидкости высотой h:

DР = ± 2s/r = (r - r o) gh, где r , r o - плотности жидкости и газовой фазы, g- ускорение свободного падения, r -радиус мениска.

Чтобы высоту капиллярного поднятия связать с характеристикой смачивания, радиус мениска выразим через угол смачивания Q и радиус капилляра r 0. Понятно, что r 0 = r cosQ, высота капиллярного поднятия выразится ввиде (формула Жюрена):

h = 2sсosQ / r 0 (r - r 0)g

При отсутствии смачивания Q>90 0 , сosQ < 0, уровень жидкости опускается на величину h. При полном смачивании Q = 0, сosQ = 1, в этом случае радиус мениска равен радиусу капилляра. Измерение высоты капиллярного поднятия лежит в основе одного из наиболее точных методов определения поверхностного натяжения жидкостей.

Капиллярным поднятием жидкостей объясняется ряд известных явлений и процессов: пропитка бумаги, тканей обусловлена капиллярным поднятием жидкости в порах. Водонепроницаемость тканей обеспечивается их гидрофобностью - следствие отрицательного капиллярного поднятия. Подъем воды из почвы, происходит благодаря структуре почвы и обеспечивает существование растительного покрова Земли, подъем воды из почвы по стволам растений происходит благодаря волокнистому строению древесины, процесс кровообращения в кровеносных сосудах, поднятие влаги в стенах здания (прокладывают гидроизоляцию) и т д.

Термодинамическая реакционная способность (т.р.с.).

Характеризует способность вещества переходить в какое-либо иное состояние, например в другую фазу, вступать в химическую реакцию. Она указывает на удаленность данной системы от состояния равновесия при данных условиях. Т.р.с. определяется химическим сродством, которое можно выразить изменением энергии Гиббса или разностью химических потенциалов.

Р.с зависит от степени дисперсности вещества. Изменение степени дисперсности может приводить к сдвигу фазового или химического равновесия.

Соответствующее приращение энергии Гиббса dG д (из-за изменения дисперсности) можно представить в виде объединенного уравнения первого и второго начала термодинамики: dG д = -S dT + V dp

Для индивидуального вещества V =V мол и при Т = const имеем: dG д = V мол dp или DG д = V мол Dp

Подставляя в это уравнение соотношение Лапласа, получим dG д = s V мол ds/dV

для сферической кривизны: dG д =±2 s V мол /r (3)

Уравнения показывают, что приращение реакционной способности, обусловленное изменением дисперсности, пропорционально кривизне поверхности, или дисперсности.

Если рассматривается переход вещества из конденсированной фазы в газообразную, то энергию Гиббса можно выразить через давление пара, приняв его за идеальный. Тогда дополнительное изменение энергии Гиббса, свзанное с изменением дисперсности состовляет:

dG д = RT ln (p д / p s) (4), где p д и p s - давление насыщенного пара над искривленной и ровной поверхностями.

Подставляя (4) в (3) получим: ln (p д / p s) = ±2 s V мол /RТ r

Cоотношение носит название уравнения Кельвина - Томсона. Из этого уравнения следует, что при положительной кривизне давление насыщенного пара над искривленной поверхностью будет тем больше, чем больше кривизна, т.е. меньше радиус капли. Например для капли воды с радиусом r = 10 -5 см (s=73, V мол =18) p д / p s = 0,01, т.е.1%. Это следствие из закона Кельвина - Томсона позволяет предсказать явление изотремической перегонки, заключающейся в испарении наиболее малых капель и конденсации пара на более крупных каплях и на плоской поверхности.

При отрицательной кривизне, имеющей место в капиллярах при смачивании, получается обратная зависимость: давление насыщенного пара над искривленной поверхностью (над каплей) уменьшается с увеличением кривизны (с уменьшением радиуса капилляра). Т.о, если жидкость смачивает капилляр, то конденсация паров в капилляре происходит при меньшем давлении, чем на ровной поверхности. Именно поэтому уравнени Кельвина часто называют уравнением капиллярной конденсации.

Рассмотрим влияние дисперсности частиц на их растворимость. Учитывая, что изменение энергии Гиббса выражается через растворимость вещества в разном дисперсном состоянии аналогично соотношению (4), получим для неэлектролитов:

ln(c д /c a) = ±2 s V мол /RТ r где c д и c a - растворимость вещества в высокодисперсном состоянии и растворимость при равновесии с крупными частицами этого вещества

Для электролита, диссоциируюшего в растворе на n ионов, можно записать (пренебрегая коэффициентами активности):

ln(a д /a с) = n ln (c д /c s) = ±2 s V мол /RТ r , где a д и a с - активности электролита в растворах, насыщенных по отношению к в высокодисперсном у и грубодисперсному состоянию. Уравнения показывают, что с увеличением дисперсности растворимость растет, или химический потенциал частиц дисперсной системы больше, чем у крупной частицы, на величину 2 s V мол /r. В то же время растворимость зависит от знака кривизны поверхности, а это значит, что если частицы твердого вещества имеют неправильную форму с положительной и отрицательной кривизной и находятся в насыщенном растворе, то участки с положительной кривизной будут растворяться, а с отрицательной - наращиваться. В результате частицы растворяемого вещества со временем приобретают вполне определенную форму, отвечающую равновесному состоянию.

Степень дисперсности может также влиять на равновесие химической реакции: - DG 0 д = RT ln (К д / К), где DG 0 д - приращение химического сродства, обусловленное дисперсностью, К д и К - константы равновесия реакций с участием диспергированных и недиспергированных веществ.

С увеличением дисперсности повышается активность компонентов, а в соответствии с этим изменяется константа химического равновесия в ту или другую сторону, в зависимости от степени дисперсности исходных веществ и продуктов реакции. Например для реакции разложения карбоната кальция: CaCO 3 « CaO + CO 2

повышение дисперсности исходного карбоната кальция сдвигает равновесие в правую сторону, и давление диоксида углерода над системой возрастает. Увеличение дисперсности оксида кальция приводит к противоположному результату.

По той же причине с увеличением дисперсности ослабляется связь кристаллизационной воды с веществом. Так макрокристалл Al 2 O 3 . 3 Н 2 О отдает воду при 473 К, в то время как в осадке из частиц коллоидных размеров кристаллогидрат разлагается при 373 К. Золото не взаимодейтсвует с хлороводородной кислотой, а коллоидное золото в ней растворяется. Грубодисперсная сера не взаимодействует заметно с солями серебра, а коллоидная сера образует сульфид серебра.

Цели урока:

  • изучение важнейших явлений и свойств природы – смачивания, не смачивания, капиллярных явлений.

Задачи урока:

Обучающие: углубление в явления смачивания и не смачивания а так же капиллярность жидкости, узнать сферу их применения;

Развивающие: развить у учащихся творческого мышления и речи;

Основные термины:

Смачивание – это поверхностное явление, которое заключается в взаимодействии поверхности твёрдого тела (другой жидкости) с жидкостью.

Угол смачивания (показывает степень смачивания) – это угол, который образованный касательными плоскостями к межфазным поверхностям, которые ограничивают смачивающую жидкость, при этом всём вершина угла лежит на линии раздела трёх фаз.

На видео представлено капиллярное течение жидкости

Искривление поверхности приводит к появлению дополнительного капиллярного давления в жидкости Dp, величина которого связана со средней кривизной r поверхности уравнением Лапласа: Dp = p1 – p2 = 2s12/r, где (s12 – поверхностное натяжение на границе двух сред; p1 и p2 – давление в жидкости 1 и контактирующей с ней среде 2.

Области применения Смачивание может объяснить применение моющих средств, тот факт, почему руки, которые в масле или смазке легче смыть бензином, чем водой, а так же почему гуси выходят сухими их воды и др. Объяснение капиллярных явлений происходит в движении воды в растениях и капиллярах. А так же при обработке почвы. Например: сохранение влаги рыхлением и др., разрушая капилляры. А так же капиллярное явление может объяснить электрические и ядерные явления, позволяет выявлять трещины с раскрытием от 1 мкм, которые невозможно увидеть невооруженным глазом.

Выводы.

Мы живём в мире самых удивительных явлений природы. Их очень много. Мы сталкиваемся с ними каждый день, не задумываясь о сущности. Но человек как разумный феномен должен понимать суть этих явлений. Такие явления как смачивание и не смачивание, капиллярное явление очень широко распространены в технике и природе. Они незаменимы в повседневной жизни и в решении научно-технических задач. Эти знания дают нам ответы на многие вопросы. Например, почему капля является в свободном полете или почему планеты и звёзды имеют шарообразную форму, одни твёрдые тела хорошо смачиваются жидкостью, а другие нет. Почему капиллярные явления могут всасывать питательные элементы, влагу из почвы корней растений, или почему кровообращение в животных организмах основано на капиллярном явлении и т. д.

Контролирующий блок:

1.Что такое капилляр?

2.Как распознать смачивание и не смачивание?

3.Приведите пример смачивания.

4.Что такое капиллярное явление?

5.Приведите пример не смачивания.

Домашнее задание.

Ход роботы

1.Поместите капли воды и масла на стеклянную, алюминиевую, медную, парафиновую пластины.

2.Зарисуйте формы капель.

3.Рассмотрите капли и сделайте выводы о взаимосвязи молекул твёрдого тела и жидкости.

4.Эти результаты заносите в таблицу.

5.Добавьте с помощью шприца в смесь воды и спарта немного оливкого масла.

6.Пропустите через центр масляного шара проволоку и вращайте её.

7.Обратите внимание как изменяется форма капли.

8.Сделайте выводы о форме поверхности жидкости.

Плёнка воды, которая находится на поверхности, является для многих организмов при движении, опорой. Она наблюдается у мелких насекомых и паукообразных. Самые известные нам водомерки, которые опираются на воду только конечными члениками широко расставленных лапок. Лапка которая покрыта воскообразным налётом, не смачивается водой. Поверхностный слой воды прогибается под давлением лапки, и образовывают небольшие углубления. (рисунок 6) Перья и пух водоплавающих птиц всегда обильно смазаны жировыми выделениями особых желёз. Это объясняет их непромокаемость. Толстый слой воздуха, который находится между перьями утки и не вытесняемый оттуда водой, не только защищает утку от потери тепла, но и чрезвычайно увеличивает запас плавучести.

Федеральное Агентство по образованию Российской Федерации

ФГОУ СПО Хакасский политехнический колледж

Внеаудиторная самостоятельная работа №1

На тему: «Смачивание, капиллярность»

Выполнил: студент группы ПРО-11

Ощепков В.Т.

Проверил: преподаватель

Галушин С.А.

Абакан 2009

    Смачивание……………………………………………………………………………3

    Смачиваемость воды………………………………………………...............5

    Капиллярность……….………………….…………………………………………..5

    Явление капиллярности в быту, природе и технике…………...6

    Список литературы…………………………………………………………………7

Смачивание

Смачивание - это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой.

Смачивание бывает двух видов:

    Иммерсионное(вся поверхность твёрдого тела контактирует с жидкостью)

    Контактное(состоит из 3х фаз - твердая, жидкая, газообразная)

Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами) смачиваемого тела (адгезия) и силами взаимного сцепления молекул жидкости (когезия).

Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания) это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. В случае порошков надёжных методов, дающих высокую степень воспроизводимости, пока(2008) не разработано. Предложен весовой метод определения степени смачивания, но он пока не стандартизован.

Измерение степени смачивания весьма важно во многих отраслях промышленности

(лакокрасочная, фармацевтическая, косметическая и т.д.). К примеру, на лобовые стёкла автомобилей наносят особые покрытия, которые должны быть устойчивы против разных видов загрязнений. Состав и физические свойства покрытия стёкол и контактных линз можно сделать оптимальным по результатам измерения контактного угла.

К примеру, популярный метод увеличения добычи нефти при помощи закачки воды в пласт исходит из того, что вода заполняет поры и выдавливает нефть. В случае мелких пор и чистой воды это далеко не так, поэтому приходится добавлять специальные ПАВ. Оценку смачиваемости горных пород при добавлении различных по составу растворов можно измерить различными приборами.

При соприкосновении жидкости с поверхностью твердого тела возможны два случая: жидкость смачивает твердое тело и не смачивает его. Если, например, капли ртути поместить на поверхность чистого железа и на чистое стекло, то на поверхности железа они будут растекаться, а на поверхности стекла иметь форму, близкую к шарообразной (рис.1.1).

А Ɵ б Ɵ

Для выяснения причин этих явлений рассмотрим отдельную молекулу, находящуюся на поверхности жидкости и соприкасающуюся с погруженным в жидкость твердым телом. Например, если описать вокруг молекулы М (рис.1.2) сферу действия молекулярных сил радиусом r 0 . Сила F ж воздействия всех молекул жидкости, входящих в сферу молекулярного действия, направлена по биссектрисе прямого угла, образованного стенкой и поверхностью жидкости, внутри жидкости. Кроме того, со стороны твердого тела на молекулу М действуют молекулярные силы F т, которые направлены перпендикулярно поверхности твердого тела. Равнодействующую F этих двух сил находят по правилу параллелограмма. В зависимости от соотношения F ж и F т равнодействующая направлена в сторону твердого тела (рис.1.2,а) или жидкости (рис.1.2,б).

а) рис 1.2 б)

Если силы взаимодействия молекул твердого тела и молекул жидкости больше сил взаимодействия между молекулами жидкости, то жидкость смачивает твердое тело (ртуть-железо). В другом случае жидкость не смачивает твердое тело (ртуть-железо).

Искривлённая поверхность жидкости в узких цилиндрических трубках или около стенок сосуда называется мениском. Поверхность смачивающей жидкости вблизи твердого тела поднимается, а мениск – вогнутый (рис.1.3,а). У несмачивающей жидкости ее поверхность вблизи твердого тела несколько опускается, и мениск – выпуклый (рис.1.3,б).

Определить, смачивающей или несмачивающей по отношению к твердому телу является жидкость, можно пол краевому углу Ɵ (угол между поверхностью твердого тела и касательной к поверхности жидкости в точке М; рис.1.1 и 1.3).

Для жидкости, смачивающей поверхность твердого тела, краевой угол Ɵ острый (Ɵ

У смачивающей жидкости мениск вогнутый, у несмачивающей – выпуклый.

Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами) смачиваемого тела (адгезия) и силами взаимного сцепления молекул жидкости (когезия).

Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания) это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. В случае порошков надёжных методов, дающих высокую степень воспроизводимости, пока не разработано. Предложен весовой метод определения степени смачивания, но он пока не стандартизован.

Измерение степени смачивания весьма важно во многих отраслях промышленности (лакокрасочная, фармацевтическая, косметическая и т.д.). К примеру, на лобовые стёкла автомобилей наносят особые покрытия, которые должны быть устойчивы против разных видов загрязнений. Состав и физические свойства покрытия стёкол и контактных линз можно сделать оптимальным по результатам измерения контактного угла.

К примеру, популярный метод увеличения добычи нефти при помощи закачки воды в пласт исходит из того, что вода заполняет поры и выдавливает нефть. В случае мелких пор и чистой воды это далеко не так, поэтому приходится добавлять специальные ПАВ. Оценку смачиваемости горных пород при добавлении различных по составу растворов можно измерить различными приборами.

Смачиваемость воды

Это свойство очень явственно проявляется и в способности воды «прилипать» ко многим предметам, то есть смачивать их. При изучении этого явления установили, что все вещества, которые легко смачиваются водой (глина, песок, стекло, бумага и др.), непременно имеют в своем составе атомы кислорода. Для объяснения природы смачивания этот факт оказался ключевым: энергетически неуравновешенные молекулы поверхностного слоя воды получают возможность образовывать дополнительные водородные связи с «посторонними» атомами кислорода. Благодаря поверхностному натяжению и способности к смачиванию, вода может подниматься в узких вертикальных каналах на высоту большую чем та, которая допускается силой тяжести, то есть вода обладает свойством капиллярности.

Капиллярность

Капиллярность (от лат. capillaris - волосяной ) - физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например, ртуть в стеклянной трубке. На основе капиллярности основана жизнедеятельность животных и растений, химические технологии, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем). Капиллярность почвы определяется скоростью, с которой вода поднимается в почве и зависит от размера промежутков между почвенными частицами. Капиллярами называются тонкие трубки, а также самые тонкие сосуды в организме человека и других животных.

Особенно хорошо наблюдается искривление мениска жидкости в тонких трубках, называемых капиллярами. Если в сосуд с жидкостью опустить капилляр, стенки которого смачиваются жидкостью, то жидкость поднимается по капилляру на некоторую высоту h (рис.1.4). это объясняется тем, что искривление поверхности жидкости вызывает дополнительно молекулярное давление. Если поверхность выпуклая и имеет сферическую форму, то добавочное давление составит

Рл=2а/r, (2.1)

где r- радиус кривизны поверхности.


Давление Рл алгебраически складывается с атмосферным. В случае выпуклого мениска (r > 0) суммарное давление больше атмосферного и жидкость опускается по капилляру. Если мениск вогнутый (r

2а/r = ρqh, (2.2)

где ρ – плотность жидкости; g – ускорение свободного падения. Из (2.1) можно определить

h = 2a/ ρqr. (2.3)

Явление капиллярности в быту, природе и технике

Явление капиллярности в быту играет огромную роль в самых разнообразных процессах, происходящих в природе. Например, проникновение влаги из почвы в растения, в стебли и листья обусловлено капиллярностью. Клетки растения образуют капиллярные каналы, и чем меньше радиус капилляра, тем выше по нему поднимается жидкость. Процесс кровообращения тоже связан с капиллярностью. Кровеносные сосуды являются капиллярами.

Особенно большое значение имеет капиллярность почвы. По мельчайшим сосудам влага из глубины перемешивается к поверхности почвы. Если хотят уменьшить испарение влаги, то почву рыхлят, разрушая капилляры. С целью увеличения притока влаги из глубины почву укатывают, увеличивая количество капиллярных каналов. В технике капиллярные явления имеют большое значения в процессах сушки, в строительстве.