Подготовка к ЕГЭ. Выразить переменную из формулы. Как выразить одну переменную через другую? Как выразить переменную из формулы? Правила вывода величины из формулы

Физика – наука о природе. Она описывает процессы и явления окружающего мира на макроскопическом ярусе – ярусе маленьких тел, сравнимых с размерами самого человека. Для изложения процессов физика использует математический агрегат.

Инструкция

1. Откуда берутся физические формулы ? Упрощенно схему приобретения формул дозволено представить так: ставится вопрос, выдвигаются догадки, проводится серия экспериментов. Итоги обрабатываются, появляются определенные формулы , и это дает предисловие новой физической теории либо продолжает и развивает теснее имеющуюся.

2. Человеку, постигающему физику, не нужно снова проходить каждый данный непростой путь. Довольно освоить центральные представления и определения, ознакомиться со схемой эксперимента, обучиться выводить основополагающие формулы . Безусловно, без крепких математических познаний не обойтись.

3. Выходит, выучите определения физических величин, относящихся к рассматриваемой теме. У всякой величины есть свой физический толк, тот, что вы обязаны понимать. Скажем, 1 кулон – это заряд, проходящий через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.

4. Уясните физику рассматриваемого процесса. Какими параметрами он описывается, и как эти параметры меняются на протяжении времени? Зная основные определения и понимая физику процесса, легко получить простейшие формулы . Как водится, между величинами либо квадратами величин устанавливаются прямо пропорциональные либо обратно пропорциональные зависимости, вводится показатель пропорциональности.

5. Путем математических реформирований дозволено из первичных формул вывести вторичные. Если вы обучитесь делать это легко и стремительно, последние дозволено будет не запоминать. Стержневой способ реформирований – способ подстановки: какая-нибудь величина выражается из одной формулы и подставляется в иную. Главно лишь, дабы эти формулы соответствовали одному и тому же процессу либо явлению.

6. Также уравнения дозволено складывать между собой, разделять, перемножать. Функции по времени дюже зачастую интегрируют либо дифференцируют, получая новые зависимости. Логарифмирование подойдет для степенных функций. При итоге формулы опирайтесь на итог, тот, что вы хотите в результате получить.

Каждая человеческая жизнь окружена большинством разновидных явлений. Ученые-физики занимаются постижением этих явлений; их инструментарием выступают математические формулы и достижения предшественников.

Природные явления

Изучение природы помогает умней относиться к имеющимся источникам, открывать новые источники энергии. Так, геотермальные источники обогревают примерно всю Гренландию. Само слово «физика» восходит к греческому корню «физис», что обозначает «природа». Таким образом, сама физика – наука о природе и природных явлениях.

Вперед, в грядущее!

Часто физики в прямом смысле «опережают время», открывая законы, которые находят использование лишь десятками лет (и даже столетиями) позднее. Никола Тесла открывал законы электромагнетизма, которые находят использование в наши дни. Пьер и Мария Кюри открыли радий фактически без поддержки, в невероятных для современного ученого условиях. Их открытия помогли спасти десятки тысяч жизней. Теперь физики каждого мира сосредоточены на вопросах Вселенной (макрокосмос) и мельчайших частиц вещества (нанотехнологии, микрокосмос).

Понимание мира

Важнейшим мотором общества является любознательность. Вот отчего эксперименты в Большом Андронном Коллайдере имеют такую высокую важность и спонсируются союзом из 60 государств. Имеется настоящая вероятность раскрыть тайны общества.Физика – наука фундаментальная. Это значит, что всякие открытия физики дозволено применять в иных сферах науки и техники. Небольшие открытия в одной ветви могут поразительно повлиять на всю «соседнюю» ветвь целиком. В физике знаменита практика изыскания группами ученых из различных стран, принята политика помощи и сотрудничества.Тайна мироздания, материи волновала великого физика Альберта Эйнштейна. Он предложил теорию относительности, поясняющую, что поля гравитации искривляют пространство и время. Апогеем теории стала известная формула E = m * C * C, объединяющая энергию с массой.

Союз с математикой

Физика опирается на новейшие математические инструменты. Нередко математики открывают абстрактные формулы, выводя новые уравнения из существующих, применяя больше высокие ярусы абстракции и законы логики, делая храбрые догадки. Физики следят за становлением математики, и изредка научные открытия абстрактной науки помогают пояснять незнакомые дотоле природные явления.Бывает и напротив – физические открытия толкают математиков на создание догадок и нового логичного агрегата. Связь физики и математики – одной из важнейших научных дисциплин подкрепляет авторитет физики.

Чтобы вывести формулу слож­ного , нужно прежде всего путем анализа установить, из каких элементов состоит вещество и в каких весовых отношениях соединены друг с другом входящие в него элементы. Обычно со­став сложного выражают в процентах, но он может быть выражен и в любых других числах, указывающих отношение между весовыми количествами элементов, образующих дан­ное вещество. Например, состав окиси алюминия, содержащей 52,94% алюминия и 47,06% кислорода, будет вполне определен, если мы скажем, что и соединены в весовом отношении 9:8, т. е. что на 9 вес. ч. алюминия приходится 8 вес. ч. кислорода. Понятно, что отношение 9: 8 должно равняться отношению 52,94: 47,06.

Зная весовой состав сложного и атомные веса обра­зующих его элементов, нетрудно найти относительное число ато­мов каждого элемента в молекуле взятого вещества и таким об­разом установить его простейшую формулу.

Положим, например, что требуется вывести формулу хлори­стого кальция, содержащего 36% кальция и 64% хлора. Атомный вес кальция 40, хлора 35,5.

Обозначим число атомов кальция в молекуле хлористого кальция через х, а число атомов хлора через у. Так как атом кальция весит 40, а атом хлора 35,5 кислородных единиц, об­щий вес атомов кальция, входящих в состав молекулы хлори­стого кальция, будет равен 40 х, а вес атомов хлора 35,5 у. Отно­шение этих чисел, очевидно, должно равняться отношению весо­вых количеств кальция и хлора в любом количестве хлористого кальция. Но последнее отношение равно 36: 64.

Приравняв оба отношения, получим:

40x: 35,5y = 36:64

Затем освободимся от коэффициентов при неизвестных х и у пу­тем деления первых членов пропорции на 40, а вторых на 35,5:


Числа 0,9 и 1,8 выражают относительное число атомов в мо­лекуле хлористого кальция, но они дробны, тогда как в моле­куле может содержаться только целое число атомов. Чтобы вы­разить отношение х :у двумя целыми числами, делим оба члена ^второго отношения на наименьший из них. Получаем

х: у = 1:2

Следовательно, в молекуле хлористого кальция на один атом кальция приходятся два атома хлора. Этому условию удовле­творяет целый ряд формул: СаСl 2 , Са 2 Сl 4 , Са 3 Сl 6 и т. д. Так как у нас нет данных, чтобы судить, какая из написанных формул отвечает действительному атомному составу молекулы хлори­стого кальция, мы остановимся на простейшей из них СаСl 2 , указывающей наименьшее возможное число атомов в молекуле хлористого кальция.

Однако произвол в выборе формулы отпадает, если наряду с весовым составом вещества известен также его молекулярный вес. В этом случае нетрудно вывести формулу, выражающую истинный состав молекулы. Приведем пример.

Путем анализа установлено, что глюкоза содержит на 4,5 вес. ч. углерода 0,75 вес. ч. водорода и 6 вес. ч. кислорода. Молеку­лярный вес ее был найден равным 180. Требуется вывести фор­мулу глюкозы.

Как и в предыдущем случае, находим сперва отношение между числом атомов углерода (атомный вес 12), водорода и кислорода в молекуле глюкозы. Обозначив число атомов угле­рода через х, водорода через у и кислорода через z, составляем пропорцию:

:у: 16z = 4,5: 0,75: 6

откуда

Разделив все три члена второй половины равенства на 0,375, получаем:

х :у: z= 1: 2: 1

Следовательно, простейшая формула глюкозы будет СН 2 O. Но вычисленный по ней равнялся бы 30, тогда как в действительности глюкозы 180, т. е. в шесть раз больше. Очевидно, что для глюкозы нужно принять формулу C 6 H 12 O 6 .

Формулы, основанные, кроме данных анализа, также и на определении молекулярного веса и указывающие действительное число атомов в молекуле, называются истинными или молекулярнымиформулами; формулы же, выведенные только из данных анализа, называются простейшими или эмпи­рическими.

Познакомившись с выводом химических формул,» легко по­нять, как устанавливаются точные молекулярные веса. Как мы уже упоминали, существующие методы определения молекуляр­ных весов в большинстве случаев не дают вполне точных резуль­татов. Но, зная хотя бы приблизительный и процентный состав вещества, можно установить его формулу, выражающую атомный состав молекулы. Так как вес молекулы равняется сумме весов образующих ее атомов, сложив веса атомов, входящих в состав молекулы, мы определим ее вес в кислородных единицах, т. е. молекулярный вес вещества. Точность найденного молекулярного веса будет такой же, как и точность атомных весов.

Нахождение формулы химического соединения во многих случаях может быть значительно упрощено, если воспользоваться понятием овалентности элементов.

Напомним, что валентностью элемента называется свойство его атомов присоединять к себе или замещать определенное число атомов другого элемента.

Что такое валентность

элемента определяется числом, показывающим, сколько атомов водорода (или другого одновалентного элемента) присоединяет или замещает атом данного элемента.

Понятие о валентности распространяется не только на от­дельные атомы, но и на целые группы атомов, входящие в состав химических соединений и участвующие как одно целое в химиче­ских реакциях. Такие группы атомов получили название радикалов. В неорганической химии наиболее важными ра­дикалами являются: 1) водный остаток, или гидроксил ОН; 2) кислотные остатки; 3) основные остатки.

Водный остаток, или гидроксил, получается, если отмолекулы воды отнять один атом водорода. В молекуле воды гидроксил связан с одним атомом водорода, следовательно, группа ОН одновалентна.

Кислотными остатками называются группы атомов (аиногда и один атом), «остающиеся» от молекул кислот, если мысленно отнять от них один или несколько атомов водорода, замещаемых металлом. этих групп определяется чис­лом отнятых атомов водорода. Например, дает два кислотных остатка - один двухвалентный SO 4 и другой одно­валентный HSO 4 , входящий в состав различных кислых солей. Фосфорная кислотаН 3 РО 4 может дать три кислотных остатка: трехвалентный РО 4 , двухвалентный НРО 4 и одновалентный

Н 2 РО 4 и т. д.

Основными остатками мы будем называть; атомы или группы атомов, «остающиеся» от молекул оснований, если мысленно отнять от них один или несколько гидроксилов. На­пример, последовательно отнимая от молекулы Fe(OH) 3 гидроксилы, получаем следующие основные остатки: Fe(OH) 2 , FeOH и Fe. их определяется числом отнятых гидроксильных групп:Fe(OH) 2 - одновалентен; Fe(OH)-двухвалентен; Fe - трехвалентен.

Основные остатки, содержащие гидроксильные группы, вхо­дят в состав так называемых основных солей. Последние можно рассматривать как основания, в которых часть гидрокси­лов замещенакислотными остатками. Так, при замещении двух гидроксилов вFe(OH)3 кислотным остатком SO 4 получается основная соль FeOHSO 4 , при замещении одного гидроксила в Bi(OH) 3

кислотным остатком NO 3 получается основная соль Bi(OH) 2 NO 3 и т.д.

Знание валентностей отдельных элементов и радикалов по­зволяет в простых случаях быстро составлять формулы очень мно­гих химических соединений, что освобождает химика от необхо­димости механически их заучивать.

Химические формулы

Пример 1. Составить формулу гидрокарбоната кальция - кислой соли угольной кислоты.

В состав этой соли должны входить атомы кальция и одновалентные кислотные остатки НСО 3 . Так как двухвалентен, то на один атом кальция надо взять два кислотных остатка. Следовательно, формула соли будет Са(НСО 3)г.

Способов выведения неизвестной из формулы много, но как показывает опыт работы – все они малоэффективны. Причина: 1. До 90% учащихся выпускных классов не умеют правильно выразить неизвестное. Те же, кто умеют это делать – выполняют громоздкие преобразования. 2. Физики, математики, химики – люди, которые говорят на разных языках, объясняя методы переноса параметров через знак равенства (предлагают правила треугольника, креста и др.) В статье рассмотрен простой алгоритм, позволяющий в один прием , без многократного переписывания выражения сделать вывод искомой формулы. Его можно мысленно сравнить с раздеванием человека (справа от равенства) в шкаф (слева): нельзя снять рубашку, не снимая пальто или: то, что первым одевают, последним снимают.

Алгоритм:

1. Записать формулу и разобрать прямой порядок выполняемых действий, последовательность вычислений: 1) возведение в степень, 2) умножение – деление, 3) вычитание – сложение.

2. Записать: (неизвестное) = (переписать обратную часть равенства) (одежда в шкафу (слева от равенства) осталась на месте).

3. Правило преобразования формул: последовательность переноса параметров через знак равенства определяется обратной последовательностью вычислений . Найти в выражении последнее действие и перенести его через знак равенства первым . Поэтапно, находя последнее действие в выражении, перенести сюда из другой части равенства (одежду с человека) все известные величины. В обратной части равенства выполняются обратные действия (если брюки снимают - «минус», то в шкаф укладывают - «плюс»).

Пример: hv = hc / λ m + 2 /2

Выразить частоту v :

Порядок действий: 1. v = переписываем правую часть hc / λ m + 2 /2

2. Разделим на h

Итог: v = ( hc / λ m + 2 /2) / h

Выразить υ m :

Порядок действий: 1. υ m = переписать левую часть (hv ); 2. Последовательно переносим сюда с обратным знаком: (- hc m ); (*2 ); (1/ m ); ( или степень 1/2 ).

Почему сначала переносится (- hc m ) ? Это последнее действие в правой части выражения. Поскольку вся правая часть умножается на (m /2 ), то и вся левая часть делится на данный множитель: поэтому ставятся скобки. Первое действие в правой части – возведение в квадрат, переносится в левую часть последним.

Эту элементарную математику с порядком действий при вычислениях каждый ученик отлично знает. Поэтому все учащиеся довольно легко, без многократного переписывания выражения , сразу выводят формулу для вычисления неизвестного.

Итог: υ = (( hv - hc m ) *2/ m ) 0.5 ` (или пишут квадратный корень вместо степени 0,5 )

Выразить λ m :

Порядок действий: 1. λ m = переписать левую часть (hv ); 2.Вычесть ( 2 /2 ); 3. Разделить на (hc ); 4. Возвести в степень (-1 ) (Математики обычно меняют числитель и знаменатель искомого выражения.)

Воспользовавшись записью первого начала термодинамики в дифференциальной форме (9.2), получим выражение для теплоёмкости произвольного процесса:

Представим полный дифференциал внутренней энергии через частные производные по параметрам и :

После чего формулу (9.6) перепишем в виде

Соотношение (9.7) имеет самостоятельное значение, поскольку определяет теплоёмкость в любом термодинамическом процессе и для любой макроскопической системы, если известны калорическое и термическое уравнения состояния.

Рассмотрим процесс при постоянном давлении и получим общее соотношение между и .

Исходя из полученной формулы, можно легко найти связь между теплоемкостями и в идеальном газе. Этим мы и займемся. Впрочем, ответ уже известен, мы его активно использовали в 7.5.

Уравнение Роберта Майера

Выразим частные производные в правой части уравнения (9.8), с помощью термического и калорического уравнений, записанных для одного моля идеального газа. Внутренняя энергия идеального газа зависит только от температуры и не зависит от объёма газа, следовательно

Из термического уравнения легко получить

Подставим (9.9) и (9.10) в (9.8), тогда

Окончательно запишем

Вы, надеюсь, узнали (9.11). Да, конечно, это уравнение Майера. Еще раз напомним, что уравнение Майера справедливо только для идеального газа.

9.3. Политропические процессы в идеальном газе

Как отмечалось выше первое начало термодинамики можно использовать для вывода уравнений процессов, происходящих в газе. Большое практическое применение находит класс процессов, называемых политропическими. Политропическим называется процесс, проходящий при постоянной теплоемкости .

Уравнение процесса задается функциональной связью двух макроскопических параметров, описывающих систему. На соответствующей координатной плоскости уравнение процесса наглядно представляется в виде графика - кривой процесса. Кривая, изображающая политропический процесс, называется политропой. Уравнение политропического процесса для любого вещества может быть получено на основе первого начала термодинамики с использованием его термического и калорического уравнений состояния. Продемонстрируем, как это делается на примере вывода уравнения процесса для идеального газа.

Вывод уравнения политропического процесса в идеальном газе

Требование постоянства теплоёмкости в процессе позволяет записать первое начало термодинамики в виде

Используя уравнение Майера (9.11) и уравнение состояния идеального газа, получаем следующее выражение для


Разделив уравнение (9.12) на T и подставив в него (9.13) придем к выражению

Разделив () на , находим

Интегрированием (9.15), получаем

Это уравнение политропы в переменных

Исключая из уравнения () , с помощью равенства получаем уравнение политропы в переменных

Параметр называется показателем политропы, который может принимать согласно () самые разные значения, положительные и отрицательные, целые и дробные. За формулой () скрывается множество процессов. Известные вам изобарный, изохорный и изотермический процессы являются частными случаями политропического.

К этому классу процессов относится также адиабатный или адиабатический процесс . Адиабатным называется процесс, проходящий без теплообмена (). Реализовать такой процесс можно двумя способами. Первый способ предполагает наличие у системы теплоизолирующей оболочки, способной изменять свой объем. Второй – заключается в осуществлении столь быстрого процесса, при котором система не успевает обмениваться количеством теплоты с окружающей средой. Процесс распространения звука в газе можно считать адиабатным благодаря его большой скорости.

Из определения теплоемкости следует, что в адиабатическом процессе . Согласно

где – показатель адиабаты.

В этом случае уравнение политропы принимает вид

Уравнение адиабатного процесса (9.20) называют также уравнением Пуассона, поэтому параметр часто именуют постоянной Пуассона. Постоянная является важной характеристикой газов. Из опыта следует, что ее значения для разных газов лежат в интервале 1,30 ÷ 1,67, поэтому на диаграмме процессов адиабата «падает» более круто, чем изотерма.

Графики политропических процессов для различных значений представлены на рис. 9.1.

На рис. 9.1 графики процессов пронумерованы в соответствии с табл. 9.1.