Аффинные преобразования. Элементарные аффинные преобразования Когда формула применима

Ниже \(f\) обозначает аффинное преобразование, записываемое в декартовой системе координат \(O, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\) формулами
$$
x^{*}=a_{1}x+b_{1}y+c_{1},\ y^{*}=a_{2}x+b_{2}y+c_{2}.\label{ref1}
$$
при условии
$$
\begin{vmatrix}
a_{1}& b_{1}\\
a_{2}& b_{2}
\end{vmatrix} \neq 0.\label{ref2}
$$

Рассмотрим на плоскости прямую линию с уравнением \(\boldsymbol{r}=\boldsymbol{r}_{0}+\boldsymbol{a}t\) и найдем ее образ при преобразовании \(f\). (Под образом прямой понимается множество образов ее точек.) Радиус-вектор образа \(M^{*}\) произвольной точки \(M\) можно вычислить так:
$$
\overrightarrow{OM^{*}}=\overrightarrow{Of(O)}+f\overrightarrow{(O)M^{*}}=\boldsymbol{c}+f(\boldsymbol{r}).\nonumber
$$

Здесь \(\boldsymbol{c}\) - постоянный вектор \(\overrightarrow{Of}(O)\), а \(\boldsymbol{r}\) - радиус-вектор точки \(M\). Согласно (11) §2 мы получаем
$$
\overrightarrow{OM^{*}}=\boldsymbol{c}+f(\boldsymbol{r}_{0})+f(\boldsymbol{a})t.\label{ref3}
$$
Так как \(f\) - аффинное преобразование и \(\boldsymbol{a} \neq \boldsymbol{0}\), то \(\boldsymbol{a}\) перейдет в вектор \(f(\boldsymbol{a}) \neq 0\), и уравнение \eqref{ref3} является уравнением прямой линии. Итак, образы всех точек прямой \(\boldsymbol{r}=\boldsymbol{r}_{0}+\boldsymbol{a}t\) лежат на прямой \eqref{ref3}.

Более того, преобразование \(f\) определяет взаимно однозначное отображение одной прямой на другую, так как при сделанном здесь выборе начальных точек и направляющих векторов точка \(M^{*}\) имеет на прямой \eqref{ref3} то же значение параметра \(t\), что и точка \(M\) на исходной прямой. Отсюда мы получаем первое утверждение.

Утверждение 1.

При аффинном преобразовании:

  • прямая линия переходит в прямую линию;
  • отрезок переходит в отрезок;
  • параллельные прямые переходят в параллельные.

Доказательство.

Для доказательства второго утверждения достаточно заметить, что отрезок прямой состоит из таких точек, у которых значения параметра удовлетворяют неравенству вида \(t_{1} \leq t \leq t_{2}\) Третье утверждение следует из того, что при аффинном преобразовании коллинеар-ные векторы переходят в коллинеарные.

Утверждение 2.

При аффинном преобразовании отношение длин параллельных отрезков не изменяется.

Доказательство.

Пусть отрезки \(AB\) и \(CD\) параллельны. Это значит, что существует такое число \(\lambda\), что \(\overrightarrow{AB}=\lambda \overrightarrow{CD}\). Образы векторов \(\overrightarrow{AB}\) и \(\overrightarrow{CD}\) связаны той же зависимостью \(\overrightarrow{A^{*}B^{*}}=\lambda \overrightarrow{C^{*}D^{*}}\). Отсюда вытекает, что
$$
\frac{|\overrightarrow{AB}|}{|\overrightarrow{CD}|}=\frac{|\overrightarrow{A^{*}B^{*}}|}{|\overrightarrow{C^{*}D^{*}}|}=|\lambda|.\nonumber
$$

Следствие.

Если точка \(C\) делит отрезок \(AB\) в некотором отношении \(\lambda\), то ее образ \(C^{*}\) делит образ \(A^{*}B^{*}\) отрезка \(AB\) в том же отношении \(\lambda\).

Изменение площадей при аффинном преобразовании.

Для начала рассмотрим . Выберем общую декартову систему координат \(O, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\) и обозначим через \((p_{1}, p_{2})\) и \((q_{1}, q_{2})\) компоненты векторов \(\boldsymbol{p}\) и \(\boldsymbol{q}\), на которых он построен. Площадь параллелограмма мы можем вычислить, пользуясь :
$$
S_{\pm}=S_{\pm} (\boldsymbol{p}, \boldsymbol{q})=(p_{1}q_{2}-p_{2}q_{1}) S_{\pm} (\boldsymbol{e}_{1}, \boldsymbol{e}_{2}).\nonumber
$$

Пусть аффинное преобразование \(f\) записывается в выбранной системе координат формулами \eqref{ref1}. Из ранее доказанного следует, что векторы \(f(\boldsymbol{p})\) и \(f(\boldsymbol{q})\) имеют в базисе \(f(\boldsymbol{e}_{1}), f(\boldsymbol{e}_{2})\) те же компоненты \((p_{1}, p_{2})\) и \((q_{1}, q_{2})\), что и векторы \(\boldsymbol{p}\) и \(\boldsymbol{q}\) в базисе \(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\). Образ параллелограмма построен на векторах \(f(\boldsymbol{p})\) и \(f(\boldsymbol{q})\), и площадь его равна
$$
S_{\pm}^{*}=S_{\pm} (f(\boldsymbol{p}), f(\boldsymbol{q}))=(p_{1}q_{2}-p_{2}q_{1}) S_{\pm} (f(\boldsymbol{e}_{1}), f(\boldsymbol{e}_{2})).\nonumber
$$

Вычислим последний множитель. Как мы знаем из уже доказанного , координаты векторов \(f(\boldsymbol{e}_{1}), f(\boldsymbol{e}_{2})\) равны соответственно \((a_{1}, a_{2})\) и \((b_{1}, b_{2})\). Поэтому \(S_{\pm} (f(\boldsymbol{e}_{1}), f(\boldsymbol{e}_{2}))=(a_{1}b_{2}-a_{2}b_{1}) S_{\pm} (\boldsymbol{e}_{1}, \boldsymbol{e}_{2})\) и
$$
S_{\pm}^{*}=(p_{1}q_{2}-p_{2}q_{1})(a_{1}b_{2}-a_{2}b_{1}) S_{\pm} (\boldsymbol{e}_{1}, \boldsymbol{e}_{2}).\nonumber
$$
Отсюда мы видим, что
$$
\frac{S_{\pm}^{*}}{S_{\pm}}=\begin{vmatrix}
a_{1}& b_{1}\\
a_{2}& b_{2}
\end{vmatrix}.\label{ref4}
$$

Таким образом, отношение площади образа ориентированного параллелограмма к площади этого параллелограмма одинаково для всех параллелограммов и равно \(a_{1}b_{2}-a_{2}b_{1}\).

Отсюда следует, что данный детерминант не зависит от выбора системы координат, в которой записано преобразование, хотя он вычисляется по коэффициентам, зависящим от системы координат. Эта величина - инвариант, выражающий геометрическое свойство преобразования.

Из формулы \eqref{ref4} видно, что отношение площади образа неориентированного параллелограмма к его площади равно
$$
S^{*}/S=|a_{1}b_{2}-a_{2}b_{1}|.\label{ref5}
$$

Если \(a_{1}b_{2}-a_{2}b_{1} > 0\), то ориентации всех ориентированных параллелограммов сохраняются при преобразовании, а если \(a_{1}b_{2}-a_{2}b_{1} < 0\), то для каждого ориентированного параллелограмма ориентация образа противоположна его ориентации.

Займемся теперь площадями других фигур. Каждый треугольник может быть дополнен до параллелограмма, площадь которого равна удвоенной площади треугольника. Поэтому отношение площади образа треугольника к площади этого треугольника удовлетворяет равенству \eqref{ref5}.

Каждый многоугольник может быть разбит на треугольники. Следовательно, формула \eqref{ref5} справедлива и для произвольных многоугольников.

Мы не будем здесь касаться определения площади произвольной криволинейной фигуры. Скажем лишь, что в тех случаях, когда эта площадь определена, она равна пределу площадей некоторой последовательности многоугольников, вписанных в рассматриваемую фигуру. Из теории пределов известно следующее предположение: если последовательность \(S_{n}\) стремится к пределу \(S\), то последовательность \(\delta S_{n}\), где \(\delta\) постоянное, стремится к пределу \(\delta S\). На основании этого предложения мы заключаем, что формула \eqref{ref5} справедлива в самом общем случае.

В качестве примера найдем выражение площади эллипса через его полуоси. Ранее мы , что эллипс с полуосями \(a\) и \(b\) может быть получен сжатием окружности радиуса \(a\) к прямой, проходящей через ее центр. Коэффициент сжатия равен \(b/a\). В одном из мы получили координатную запись сжатия к прямой \(x^{*}=x\), \(y^{*}=\lambda y\). Детерминант из коэффициентов в этих формулах равен \(\lambda\), то есть в нашем случае \(b/a\). Таким образом, отношение площади эллипса к площади окружности равно \(b/a\), и эта площадь равна \(S=(b/a)\pi a^{2}\). Окончательно имеем
$$
S=\pi ab.\nonumber
$$

Образы линий второго порядка.

Мы видели, что прямая линия переходит в прямую. Это частный случай следующего утверждения.

Утверждение 3.

Аффинное преобразование переводит алгебраическую линию в алгебраическую линию того же порядка.

Доказательство.

В самом деле, пусть линия \(L\) в декартовой системе координат \(O, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\) имеет алгебраическое уравнение порядка \(p\). Мы уже , что образы всех точек линии \(L\) при аффинном преобразовании \(f\) имеют в системе координат \(f(O), f(\boldsymbol{e}_{1}), f(\boldsymbol{e}_{2})\) те же координаты, что и их прообразы в системе координат \(O, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\). Следовательно, координаты образов в системе \(f(O), f(\boldsymbol{e}_{1}), f(\boldsymbol{e}_{2})\) связаны тем же алгебраическим уравнением порядка \(p\). Этого достаточно, чтобы сделать нужное нам заключение.

Из доказанного выше утверждения, в частности, следует, что линия второго порядка при аффинном преобразовании перейдет в линию второго порядка. Мы докажем более сильное утверждение. Как мы уже знаем, линии второго порядка можно разделить на . Мы увидим, что класс линии сохраняется при аффинном преобразовании. На этом основании классы линий, перечисленные в указанной теореме, называются аффинными классами. Итак, докажем новое утверждение.

Утверждение 4.

Линия второго порядка, принадлежащая к одному из аффинных классов, при любом аффинном преобразовании может перейти только в линию того же класса. Каждую линию второго порядка подходящим аффинным преобразованием можно перевести в любую другую линию того же аффинного класса.

Доказательство.

Линию мы назовем ограниченной, если она лежит внутри некоторого параллелограмма. Легко видеть, что при аффинном преобразовании ограниченная линия должна перейти в ограниченную, а неограниченная - в неограниченную.

  1. Эллипс - ограниченная линия второго порядка. Кроме эллипсов ограничены только линии, состоящие из одной точки, то есть пары мнимых пересекающихся прямых. Поскольку эллипс ограничен и состоит больше, чем из одной точки, он может перейти только в эллипс.
  2. Гипербола состоит из двух отдельных ветвей. Это свойство можно сформулировать так, что будет ясна его неизменность при аффинных преобразованиях. Именно, существует прямая линия, не пересекающая гиперболу, но пересекающая некоторые ее хорды.Из всех линий второго порядка только гиперболы и пары параллельных прямых обладают этим свойством. У гиперболы ветви не прямые линии, и потому при аффинном преобразовании она может перейти только в гиперболу.
  3. Парабола - неограниченная линия второго порядка, состоящая из одного непрямолинейного куска. Этим свойством не обладают никакие другие линии второго порядка, и потому парабола может перейти только в параболу.
  4. Если линия второго порядка представляет собой точку (пару мнимых пересекающихся прямых), прямую (пару совпавших прямых), пару пересекающихся или пару параллельных прямых, то из доказанных ранее свойств аффинных преобразований следует, что эта линия не может перейти в линию никакого другого класса.

Докажем вторую часть предложения. В уже доказанной нами канонические уравнения линий второго порядка написаны в декартовой прямоугольной системе координат и содержат параметры \(a, b, …\) Если мы откажемся от ортонормированности базиса, то сможем произвести дальнейшие упрощения канонических уравнений и привести их к виду, не содержащему параметров. Например, замена координат \(x’=x/a\), \(y’=y/b\) переводит уравнение эллипса \(x^{2}a^{2}+y^{2}b^{2}=1\) в уравнение \(x’^{2}+y’^{2}=1\), каковы бы ни были \(a\) и \(b\). (Последнее уравнение не есть уравнение окружности, так как новая система координат не декартова прямоугольная.)

Читатель без труда покажет, что канонические уравнения линий второго порядка переходом к подходящей системе координат могут быть преобразованы в уравнения:

  1. \(x^{2}+y^{2}=1\);
  2. \(x^{2}+y^{2}=0\);
  3. \(x^{2}-y^{2}=1\);
  4. \(x^{2}-y^{2}=0\);
  5. \(y^{2}=2x\);
  6. \(y^{2}-1=0\);
  7. \(y^{2}=0\).

Такую систему координат мы назовем аффинной канонической системой координат.

Из ранее следует, что аффинное преобразование, которое совмещает аффинные канонические системы координат двух линий одного аффинного класса, совмещает и эти линии. Это заканчивает доказательство.

Разложение ортогонального преобразования.

Теорема 1.

Каждое ортогональное преобразование раскладывается в произведение параллельного переноса, поворота и, возможно, осевой симметрии.

Доказательство.

Пусть \(f\) - ортогональное преобразование и \(\vartriangle ABC\) - равнобедренный прямоугольный треугольник с прямым углом \(A\). При преобразовании \(f\) он перейдет в равный ему треугольник \(\vartriangle A^{*}B^{*}C^{*}\) с прямым углом при вершине \(A^{*}\). Теорема будет доказана, если, производя последовательно параллельный перенос \(p\), поворот \(q\) и (в случае необходимости) осевую симметрию \(r\), мы сможем совместить треугольники \(ABC\) и \(A^{*}B^{*}C^{*}\). Действительно, произведение \(rqp\) - аффинное преобразование так же, как и \(f\), а аффинное преобразование однозначно определяется образами трех точек, не лежащих на одной прямой. Поэтому \(rqp\) совпадает с \(f\).

Итак, переведем \(A\) и \(A^{*}\) параллельным переносом \(p\) на вектор \(\overrightarrow{AA^{*}}\) (если \(A=A^{*}\), то \(p\) - тождественное преобразование). Затем поворотом \(q\) вокруг точки \(A^{*}\) совместим \(p(B)\) с \(B^{*}\) (возможно, и это преобразование окажется тождественным). Точка \(q(p(C))\) либо совпадает с \(C^{*}\), либо симметрична ей относительно прямой \(A^{*}B^{*}\). В первом случае цель уже достигнута, а во втором потребуется осевая симметрия относительно указанной прямой. Теорема доказана.

Следует иметь в виду, что полученное разложение ортогонального преобразования не однозначно. Более того, можно поворот или параллельный перенос разложить в произведение осевых симметрий, произведение параллельного переноса и поворота представить как один поворот и так далее. Мы не будем уточнять, как это сделать, а выясним следующее общее свойство всех таких разложений.

Утверждение 5.

При любом разложении ортогонального преобразования в произведение любого числа параллельных переносов, поворотов и осевых симметрий четность числа осевых симметрий, входящих в разложение, одна и та же.

Доказательство.

Для доказательства рассмотрим на плоскости произвольный базис и проследим за изменением его ориентации (направления кратчайшего поворота от \(\boldsymbol{e}_{1}\) к \(\boldsymbol{e}_{2}\)) при осуществляемых преобразованиях. Заметим, что поворот и параллельный перенос не меняют ориентацию ни одного базиса, а осевая симметрия меняет ориентацию любого базиса. Поэтому, если данное ортогональное преобразование меняет ориентацию базиса, то в любое его разложение должно входить нечетное число осевых симметрий. Если же ориентация базиса не меняется, то число осевых симметрий, входящих в разложение, может быть только четным.

Определение.

Ортогональные преобразования, которые могут быть разложены в произведение параллельного переноса и поворота, называются ортогональными преобразованиями первого рода , а остальные - ортогональными преобразованиями второго рода .

Ортогональное преобразование в декартовой прямоугольной системе координат записывается :
$$
\begin{array}{cc}


\end{array}.\nonumber
$$
При верхних знаках коэффициентов у \(y\) в этих формулах детерминант, составленный из коэффициентов, равен +1, а при нижних знаках он равен -1. Отсюда и из формулы \eqref{ref4} следует следующее утверждение.

Утверждение 6.

Ортогональное преобразование первого рода записывается в декартовой прямоугольной системе координат формулами
$$
\begin{array}{cc}
& x^{*}=x \cos \varphi \mp y \sin \varphi+c_{1},\\
& y^{*}=x \sin \varphi \pm y \cos \varphi+c_{2}.
\end{array}.\nonumber
$$
с верхними знаками у коэффициентов при \(y\), а ортогональное преобразование второго рода - с нижними знаками.

Разложение аффинного преобразования.

Мы видели, насколько аффинное преобразование может изменить плоскость: окружность может перейти в эллипс, правильный треугольник - в совершенно произвольный. Казалось бы, никакие углы при этом сохраниться не могут. Однако имеет место следующее утверждение

Утверждение 7.

Для каждого аффинного преобразования существуют две взаимно перпендикулярные прямые, которые переходят во взаимно перпендикулярные прямые.

Доказательство.

Для доказательства рассмотрим какую-либо окружность. При данном аффинном преобразовании она перейдет в эллипс. Каждая ось эллипса - множество середин хорд, параллельных другой оси. При аффинном преобразовании хорда перейдет в хорду, параллельность должна сохраниться, а середина отрезка переходит в середину его образа. Поэтому прообразы осей эллипса - отрезки, обладающие тем же свойством: каждый из них есть множество середин хорд окружности, параллельных другому отрезку. Такие отрезки непременно являются двумя взаимно перпендикулярными диаметрами окружности. Это то, что нам требовалось: существуют два взаимно перпендикулярных диаметра окружности, которые переходят во взаимно перпендикулярные отрезки - оси эллипса.

Стоит отметить один особый случай: окружность при аффинном преобразовании может перейти в окружность. В этом случае то же рассуждение проходит с любыми двумя взаимно перпендикулярными диаметрами окружности-образа. Очевидно, что при этом любые два взаимно перпендикулярных направления остаются перпендикулярными.

Определение.

Два взаимно перпендикулярных направления называются главными или синугулярными направлениями аффинного преобразования \(f\), если они переходят во взаимно перпендикулярные направления.

Теорема 2.

Каждое аффинное преобразование раскладывается в произведение ортогонального преобразования и двух сжатий к двум взаимно перпендикулярным прямым.

Доказательство.

Доказательство аналогично доказательству . Рассмотрим аффинное преобразование \(f\) и выберем равнобедренный прямоугольный треугольник \(ABC\) так, чтобы его катеты \(AB\) и \(AC\) были направлены вдоль главных направлений преобразования \(f\). Обозначим через \(A^{*}\), \(B^{*}\) и \(C^{*}\) образы его вершин. Сделаем такое ортогональное преобразование \(g\), при котором \(g(A)=A^{*}\), а точки \(g(B)\) и \(g(C)\) лежат соответственно на лучах \(A^{*}B^{*}\) и \(A^{*}C^{*}\). (Этого легко добиться, как и в теореме 1, параллельным переносом, поворотом и осевой симметрией.)

Пусть \(\lambda=|A^{*}B^{*}|/|A^{*}g(B)|\), a \(\mu=|A^{*}C^{*}|/|A^{*}g(C)|\). Тогда сжатие \(p_{1}\) к прямой \(A^{*}C^{*}\) в отношении \(\lambda\) переведет \(g(B)\) в \(p_{1}g(B)=B^{*}\) и не сдвинет точек \(A^{*}\) и \(g(C)\). Аналогично, сжатие \(p_{2}\) к прямой \(A^{*}B^{*}\) переведет \(g(C)\) в \(p_{2}g(C)=C^{*}\) и не сдвинет точек прямой \(A^{*}B^{*}\).

Это означает, что произведение \(p_{2}p_{1}g\) переводит точки \(A\), \(B\) и \(C\) в точки \(A^{*}\), \(B^{*}\) и \(C^{*}\) так же, как и заданное нам преобразование \(f\). Согласно ранее доказанному имеем \(p_{2}p_{1}g=f\), как и требовалось.

Для начала: на чем основывается метод решения с помощью аффинных преобразований?

Необходим некий краткий теоретический материал для учащихся.

Сообщаем, что система координат не обязательно должна быть прямоугольной. Если выбрать на плоскости 3 точки , не лежащие на одной прямой, то они и будут задавать аффинную систему координат, а точка и векторы и образуют аффинный репер (базис).

Определение 1. Пусть в плоскостях и заданы два аффинных репера и , соответственно. Отображение плоскости на плоскость называется аффинным отображением плоскостей, если при этом отображении точка с координатами в системе координат (репере ) переходит в точку с теми же координатами в системе координат (репере ).

Свойства аффинных преобразований:

1) По свойствам координат аффинное преобразование является взаимно однозначным отображением плоскости на плоскость:

Каждая точка имеет образ и притом только один;

Разные точки имеют разные образы;

Каждая точка области значений имеет прообраз.

2) Так как аффинное отображение сохраняет координаты точек, то оно сохраняет уравнения фигур. Отсюда следует, что прямая переходит в прямую.

3) Преобразование, обратное к аффинному, есть снова аффинное преобразование.

4) Точки, не лежащие на одной прямой, переходят в точки, не лежащие на одной прямой, а, значит, пересекающиеся прямые - в пересекающиеся прямые, а параллельные – в параллельные.

5)При аффинных преобразованиях сохраняются отношения длин отрезков, лежащих на одной или параллельных прямых.

6) Отношения площадей многоугольников также сохраняются.

7) Не обязательно сохраняются отношения длин отрезков непараллельных прямых, углы.

Замечание 1: Если А, В, С - три точки плоскости, не лежащие на одной прямой, а - три другие точки, не лежащие на одной прямой, то существует и притом только одно аффинное преобразование, переводящее точки А, В, С в точки .

Замечание 2: Параллельное проектирование есть аффинное преобразование плоскости на плоскость. Кстати эта тема “Параллельное проектирование” присутствует в школьном учебнике геометрии 10-11(2000) Л. С. Атанасяна в приложении 1. В основном этот материал используется тогда, когда мы учим изображать пространственные фигуры на плоскости.

Чтобы представить, что могут аффинные преобразования, посмотрим картинки. Учащимся лучше всего именно наглядно показать применение аффинных преобразований на отвлеченном предмете и только потом переходить на геометрические фигуры.

Частным случаем аффинных преобразований являются преобразование подобия, гомотетия и движения. Движения - это параллельные переносы, повороты, различные симметрии и их комбинации. Другой важный случай аффинных преобразований - это растяжения и сжатия относительно прямой. На рисунке 2 <Рисунок 2> показаны различные движения плоскости с нарисованным на ней домиком. А на рисунке 3 и 4 <Рисунок 3> <Рисунок 4>показаны различные аффинные преобразования этой плоскости (параллельное проектирование).

А вот на следующей картинке <Рисунок 5> можно объяснить суть метода.

Если перед вами стоит задача о вычислении каких-то соотношений или пропорций на искаженном рисунке, например: найти отношение длины ушей к длине хвоста, то можно найти это отношение на более удобном рисунке (неискаженном), что намного проще, и найденное решение будет соответствовать и искаженному рисунку в том числе. Но нельзя искать отношение, например, длины ушей к толщине зайца, т.к. это отрезки непараллельных прямых.

Теперь перейдем к геометрическим фигурам. Как на них может работать этот метод?

Обычно, задачу можно решить методом аффинных преобразований, если нужно найти отношение длин, отношение площадей, доказать параллельность или принадлежность точек одной прямой. Причем в условии задачи не должны содержаться данные, не сохраняющиеся при аффинных преобразованиях.

Свойства фигур называются аффинными, если они сохраняются при аффинных отображениях. Например, быть медианой треугольника- это аффинное свойство (середина стороны переходит в середину при аффинном отображении), а быть биссектрисой – нет.

Суть метода при решении геометрических задач.

Часто бывает удобно при решении задач на аффинные свойства перейти с помощью аффинных преобразований к более простым фигурам, например, к правильному треугольнику. А затем с помощью обратного аффинного преобразования перенести полученный результат на искомую фигуру.

Для начала можно решить всем известную задачу о точке пересечения медиан треугольника.

Задача 1. Доказать, что медианы произвольного треугольника пересекаются в одной точке и делятся в отношении 2:1, считая от вершины. <Рисунок 6>

Решение (по алгоритму).

Пусть дан треугольник ABC. 1) Проверим аффинные свойства фигуры. Треугольник (по замечанию 1) является аффинной фигурой, быть медианой - это тоже аффинное свойство и отношения длин отрезков также сохраняется при аффинном отображении.

2) Значит, можно перейти к более удобной фигуре - равностороннему треугольнику.

3) Возьмем равносторонний треугольник . У этого треугольника медианы , пересекаются в одной точке (как высоты или биссектрисы равностороннего треугольника) и делятся этой точкой в отношении 2:1, считая от вершины. Действительно, и . А отношение из прямоугольного треугольника . Значит, .

4) Зададим аффинное отображение, переводящее треугольник в треугольник АВС. При этом отображении медианы треугольника переходят в медианы треугольника АВС и их точка пересечения переходит в точку пересечения их образов и она делит медианы произвольного треугольника ABC в отношении 2:1, считая от вершины.

5) Утверждение для произвольного треугольника доказано.

Задача 2. Доказать, что в любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжений боковых сторон лежат на одной прямой.

Пусть дана трапеция ABCD, в которой M и N – середины оснований, Q – точка пересечения диагоналей, О – точка пересечения продолжений боковых сторон. <Рисунок 7>

1) Проверим аффинные свойства фигуры. Трапеция - аффинная фигура (так как трапеция переходит в трапецию), принадлежность точек одной прямой является аффинным свойством. Таким образом, и условие, и вопрос задачи относятся к аффинному классу задач. Значит, можно применить метод аффинных преобразований.

2) Возьмем произвольный равнобедренный треугольник . Существует аффинное отображение, переводящее точки А в , В в , О в . При этом аффинном отображении на отрезке существует точка - образ точки D, а на отрезке - точка (образ точки С). Трапеция равнобокая.

3) Доказать сформулированную задачу для равнобокой трапеции труда не составит (при чем не одним способом).

4) Таким образом, доказав, что точки , , , лежат на одной прямой, применим свойство аффинных отображений (отображение, обратное к аффинному, есть снова аффинное отображение) и поэтому точки O, M, Q, N также лежат на одной прямой трапеции ABCD.

5) Доказанный факт справедлив и для произвольной трапеции.

Примечание. Четырехугольники аффинно эквивалентны тогда и только тогда, когда точка пересечения диагоналей делит их в одном и том же отношении.

Задача 3 (из диагностической работы по подготовке к ЕГЭ-2010). Через точку О, лежащую в треугольнике АВС, проведены три прямые, параллельные всем сторонам треугольника. В результате треугольник разбился на 3 треугольника и 3 параллелограмма. Известно, что площади полученных треугольников равны соответственно 1; 2.25 и 4. Найдите сумму площадей полученных параллелограммов (задача из диагностической работы по подготовке к ЕГЭ - 2010)

Но эту задачу легко решить с помощью аффинных преобразований.

Задача 4 (стереометрическая). Докажите, что диагональ параллелепипеда проходит через точки пересечения медиан треугольников и и делится этими точками на три равных отрезка.

Это №372 из учебника Атанасяна (11 класс). В учебнике дано ее решение векторным методом. Но можно применить метод аффинных преобразований, решив эту задачу на кубе уже в 10 классе.

В этой задаче с помощью аффинных преобразований докажем равенство трех отрезков.

1) Проверим аффинные свойства фигуры и условия задачи. Аффинным образом любого параллелепипеда может быть куб. Деление отрезка в заданном отношении – это аффинное свойство.

2) Рассмотрим одноименный куб , в котором диагональ проходит через точки пересечения медиан треугольников и . <Рисунок 10>

3) Докажем, что диагональ делится этими точками на три равных отрезка.

4) Существует аффинное отображение, переводящее куб в произвольный параллелепипед. Значит, эта задача будет верна и для произвольного параллелепипеда.

5) Обобщения. Какие свойства, доказанные на кубе, сохранятся для произвольного параллелепипеда, а какие нет (обсудить с учащимися).

Например: параллельность плоскостей и отношение сохранится, перпендикулярность диагонали плоскостям нет, правильные треугольники не сохранятся, так же как и центр правильного треугольника, он перейдет в точку пересечения медиан.

Таким образом, уже в 10 классе можно делать с учащимися обобщения для произвольных фигур, пользуясь свойствами аффинных отображений.

Мы рассмотрели задачи программного уровня, а теперь рассмотрим задачи продвинутого уровня.

Вот задача, предложенная учащимся 11-го класса на олимпиаде в этом году. Никто, к сожалению, с ней не справился. Посмотрим, как метод аффинных преобразований поможет нам ее решить.

Задача 5 (олимпиада 11 класс). Треугольная пирамида рассечена плоскостью так, что медианы боковых граней разбиты точками пересечения в отношении 2:1,3:1 и 4:1, считая от вершины пирамиды. В каком отношении, считая от вершины пирамиды, разбиты боковые рёбра? (Из материалов МГТУ им. Баумана). Ответ: 12:7 , 12:5, 12:1

А решение с помощью аффинных преобразований мы рассмотрим.

1) В задаче фигурирует произвольная пирамида, в которой проведены медианы (а быть медианой - это аффинное свойство), на медианах взяты пропорциональные отрезки (при аффинном преобразовании сохраняются отношения длин отрезков, лежащих на одной прямой). Значит, эту задачу можно решить для “удобной” пирамиды, а затем с помощью аффинного преобразования перенести результат на произвольную.

2) Решим задачу для пирамиды, у которой три плоских угла при вершине прямые. Поместим новую пирамиду в прямоугольную систему координат OXYZ. <Рисунок 11>

3) Проведем медиану на одной из граней. и - средние линии треугольника АОВ. Точка , такая что . Тогда координаты точки К или, учитывая, что и середины соответственно ОА и ОВ, К.На другой грани проведем медиану . На ней отметим точку М, такую что . Аналогично находим координаты М или М .Наконец, точка N лежит на медиане и , тогда N или N.

Итак: Кили К , Мили М

N или N

Анализируя, выберем сами удобные числовые координаты для точек А(40;0;0), В(0;15;0), С(0;0;24).

Плоскость (MNK) пересекает ребра пирамиды в неких точках . Найдем сначала координаты точки (х; 0; 0). Точка (KMN), если существуют такие, что, допустим (это векторы). Запишем координаты векторов (15; -5; 1), (16; 1; -8), (х; -5; -8). Тогда имеет место следующая система уравнений . Решаем ее: умножим второе уравнение на 8, получим .Далее, сложив второе и третье, имеем. Откуда найдем и х .

Нам надо найти отношение
. Значит, точка делит ребро ОА в отношении 12:1. Вычисления тоже приличные, но понятные. Аналогично можно найти отношения и для двух других сторон.

Решив задачу на “удобной” пирамиде, учитывая, что существует аффинное преобразование, переводящее эту пирамиду в произвольную, переносим результат на произвольную пирамиду.

Если бы в условии данной задачи была предложена “удобная” пирамида, наверное, кто-то из учеников сделал хотя бы попытки решить задачу.Метод аффинных преобразований позволяет трудные факты свести к легкому доказательству.

Например, доказать следующую задачу 6 : Пусть заданы два треугольника АВС и в одной плоскости. Прямые, проходящие через соответсвующие вершины этих треугольников пересекаются в одной точке S. Если прямые, содержащие соответсвующие стороны этих треугольников попарно пересекаются, то точки пересечения лежат на одной прямой. . Ачтобы доказать принадлежность трех точек одной прямой, построим пересечение плоскостей АВС и (так как две плоскости пересекаются по прямой).

Построение.1) , 2) , 3)

В пересечении плоскостей три точки, следовательно, они лежат на одной прямой. Эта задача (теорема Дезарга) доказана.

В продолжение такого применения аффинных преобразований (решение пространственной задачи как планиметрической) можно рассмотреть еще одну интересную задачу.

Задача (Соросовская олимпиада)

Даны три луча в плоскости и три точки A, B, C. Построить треугольник с вершинами на этих лучах, стороны которого проходят через точки A, B, C соответственно (помощью одной линейки).

То есть картинка должна быть примерно такая. <Рисунок 13>

Будем рассматривать эту картинку как аффинный образ (при некотором аффинном отображении) пирамиды XOYZ на плоскость. Вершины пирамиды лежат на осях координат, а точки А, В, С - точки в координатных плоскостях. Тогда задача сводится к тому, чтобы построить линии пересечения плоскости (АВС) с координатными плоскостями. Существует, конечно, способ построения с помощью циркуля и линейки, но нам он не нужен. Итак, без циркуля.

Выводы.

Итак, вам был представлен метод решения задач с помощью аффинных преобразований. Подведем итоги.

  • Метод позволяет перейти от более сложного к более простому для осуществления процесса решения.
  • Носит обобщающий характер.
  • Имеет широкую область применения, в том числе в смежных областях.
  • Позволяет интегрировать разные разделы математики.
  • Осмысление и применение данного метода формирует у учащихся конструктивный подход к решению задач и критичность мышления.

Литература

  1. Геометрия: Учеб.для 10-11 кл.общеобразоват.учреждений/Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. -М.: Просвещение, 2007.
  2. И. Кушнир “Математическая энциклопедия”. Астарта. Киев.1995.
  3. Р. Хартсхорн “Основы проективной геометрии”. Издательство “Мир”. Москва.1970.

Свойства аффинного преобразования

1. Образом параллельных прямых являются параллельные прямые.

Доказательство от противного. Предположим, что образом параллельных прямых l и m являются пересекающиеся в точке А" прямые l" и m"(рис.8). В силу взаимной однозначности преобразования точка имеет прообраз, который обозначим А. Но так как А"єl", то Аєl. Аналогично Аєm. Это противоречит параллельности прямых l и m.

2. При аффинном преобразовании сохраняется отношение двух отрезков, расположенных на одной прямой: (рис.9)

В самом деле, по определению аффинного преобразования:

3. При аффинном преобразовании сохраняется отношение параллельных отрезков.

Дано: АВ||СD. По свойству 2 будет также А"В"||С"D"(рис.10)

Надо доказать:

Для доказательства проведем АС, затем DL||AC. Построим также А"С" и D"L"||A"C". По свойству 2 прямая DL переходит в D"L" и значит, . Теперь по определению: . Но AL=CD, A"L"=C"L", поэтому отсюда сразу получается требуемое.

4. При аффинном преобразовании угол и отношение произвольных отрезков, вообще говоря, не сохраняются, так как любой треугольник можно перевести в любой другой. Поэтому высота и биссектриса треугольника преобразуются обычно в другие линии, медиана же переходит в медиану, так как середина отрезка переходит в середину.

5. При аффинном преобразовании параллелограмм переходит в параллелограмм, трапеция в трапецию.

Эквивалентные фигуры

Аналогично понятию равенства и подобия фигур вводится понятие их аффинной эквивалентности.

Фигура F1 называется аффинно эквивалентной фигуре F2, если F1 можно аффинным преобразованием перевести в F2.

Корректность этого определения вытекает из того, что аффинные преобразования образуют группу и, следовательно, введенная здесь аффинная эквивалентность обладает транзитивностью, рефлексивностью, симметричностью.

Отметим некоторые классы аффинно эквивалентных фигур.

1). Все треугольники аффинно эквивалентны (следует из основной теоремы).

2). Все параллелограммы аффинно эквивалентны.

3). Для аффинной эквивалентности трапеций необходимо и достаточно, чтобы их основания были пропорциональны.

Перспективно-аффинное соответствие двух плоскостей

Предположим, что две плоскости w и w" пересекаются по линии хх (черт. 1). Зададим какую-нибудь прямую l, пересекающую обе плоскости. Отметим на плоскости w произвольную точку А и спроектируем ее на плоскость w", проводя через А прямую, параллельную l. Пусть проектирующая прямая пересечет плоскость w" в точке А". Точку А" можно рассматривать как проекцию точки А на плоскость w". Такая проекция называется параллельной и определяется заданием прямой l.

Из самого построения проекции А" точки А видно, что в свою очередь точку А можно рассматривать как проекцию точки А" на плоскость w. Таким образом, параллельная проекция представляет собой аппарат, имеющий совершенно одинаковое значение по отношению к обеим плоскостям w и w". Она относит каждой точке (А) первой плоскости вполне определенную точку (А") второй, и обратно. Мы получаем попарное соответствие точек плоскостей w и w". Это соответствие является взаимно однозначным, т. е. каждой точке одной плоскости соответствует единственная точка второй, и обратно.

Соответствие плоскостей w и w", установленное с помощью параллельной проекции, называется перспективно- аффинным или родственным.

Если рассматривают процесс перехода от одной из данных плоскостей (например, w) к другой плоскости (w"), при котором каждая точка (А) одной плоскости (w) переходит в соответствующую точку (А") другой плоскости (w"), как односторонний, то его называют преобразованием плоскости (w) в плоскость (w")- В этом случае точку А называют прообразом, а точку А" - ее образом.

Проектируя параллельно плоскость w на плоскость w" , производим перспективно-аффинное преобразование плоскости w в плоскость w" .

Можно также совокупность всех точек плоскости w называть полем точек w и говорить о преобразовании поля точек w в поле точек w".

Поставим себе задачу изучить свойства перспективно-аффинного соответствия плоскостей.

Займемся, прежде всего, вопросом о двойных, или неподвижных, точках нашего соответствия, т. е. о таких точках, которые совпадают со своими соответственными точками. Так как каждая двойная точка должна принадлежать как одной, так и другой плоскости, то они должны лежать на линии пересечения хх плоскостей w и w". С другой стороны, очевидно, что каждая точка прямой хх есть двойная, так как она сама себе соответствует. Прямая называется осью соответствия. Согласно предыдущему ось соответствия может быть определена как геометрическое место двойных точек.

Таким образом, прямой линии на одной плоскости соответствует прямая же линия на другой. Это свойство перспективно-аффинного соответствия называют коллинеарностью. В силу самого определения параллельной проекции фигуры как геометрического места проекций всех точек этой фигуры каждой точке, лежащей на прямой, всегда соответствует точка, лежащая на соответственной прямой. Поэтому взаимопринадлежность точки и прямой на одной плоскости влечет за собой взаимопринадлежность соответственных элементов на второй.

2. Следующее свойство перспективно-аффинного соответствия касается так называемого простого отношения трех точек прямой.

Рассмотрим три точки А, В, С, лежащие на одной прямой (черт 1). Простое отношение точек А, В, С определяется формулой:

геометрический преобразование аффинный соответствие

В этой формуле точки А и В считаются основными (или базисными), а точка С- делящей. Простое отношение (ABC) представляет собой отношение длин тех отрезков, которые делящая точка образует с основными. Если точка С лежит вне отрезка А В, то оба отрезка АС и ВС одинаково направлены, и поэтому в этом случае простое отношение (ABC) положительно. В случае, когда делящая точка С находится между А и В, простое отношение (ABC) отрицательно.

На чертеже 1 видно, что точкам А,В, С плоскости w соответствуют точки А", В", С" плоскости w". Так как проектирующие прямые АА", ВВ", СС" параллельны, то будем иметь:

или (ABC) = (А"В"С").

Мы приходим к выводу, что в перспективно-аффинном соответствии простое отношение трех точек прямой одной плоскости всегда равно простому отношению трех соответственных точек другой.

3. Прежде чем перейти к рассмотрению дальнейших свойств перспективно-аффинного соответствия, остановимся на вопросе о возможном расположении соответственных плоскостей w и w" в пространстве.

До сих пор мы предполагали эти плоскости несовпадающими и пересекающимися по линии хх с той целью, чтобы посредством параллельного проектирования установить рассмотренное выше перспективно-аффинное соответствие. После того как такое соответствие установлено, можно было бы привести обе плоскости в совпадение, вращая какую-либо одну из них вокруг оси хх. При этом все геометрические образы, находящиеся в той и другой плоскости, не подвергаются никакому изменению. Следовательно, как в любой момент вращения плоскости, так и при ее совмещении со второй плоскостью установленное ранее перспективно-аффинное соответствие не нарушается.

Прямые, соединяющие соответственные точки, как АА", ВВ", СС",…, остаются параллельными при любом положении вращающейся плоскости, а также и после ее совмещения с неподвижной плоскостью. Это видно из того, что каждые две из упомянутых прямых (например, АА" и ВВ") всегда лежат в одной плоскости, определяемой парой пересекающихся прямых (АВ и А"В"), и отсекают на сторонах угла пропорциональные отрезки, так как (АВХ) = (А"В"Х). При совмещении плоскостей w и w" проектирующие прямые (АА", ВВ",...) окажутся лежащими в плоскости, образовавшейся из двух совпавших плоскостей w и w" (черт. 2).

Для нас особенно интересен случай совмещенного положения плоскостей так как в этом случае мы можем пользоваться плоским чертежом, изображающим установленное соответствие без искажения.

В случае совмещения каждую точку (двойной) плоскости можно рассматривать как принадлежащую плоскости w или w" и обозначать ее в зависимости от этого большой буквой без штриха или со штрихом. Таким образом, мы имеем преобразование плоскости в себя, причем ее начальное состояние (плоскость до преобразования) обозначается буквой w, а новое состояние (плоскость после преобразования) - буквой w".

Заметим, что после совмещения плоскостей ось соответствия хх перестает быть линией пересечения данных плоскостей, но за ней сохраняется второе определение как геометрического места двойных, или неподвижных, точек.

4. Теперь мы могли бы отказаться от пространственного аппарата (параллельной проекции), послужившего нам для установления перспективно-аффинного соответствия двух плоскостей, и определить последнее для двойной плоскости, не выходя в пространство. С этой целью докажем следующее предположение: Перспективно-аффинное преобразование плоскости в себя вполне определяется осью (хх) и парой соответственных точек (А, А").

Доказательство. Пусть даны ось хх и пара соответственных точек (АА") перспективно-аффинного преобразования (черт. 3). Докажем, что для любой точки В плоскости можно построить вполне определенную и единственную соответственную точку В".

Проведем прямую АВ. Пусть X -точка ее пересечения с осью хх. Так как точка X сама себе соответствует (как лежащая на оси), то прямой АХ соответствует прямая А"X. Наконец, точка В" должна лежать на прямой А"Х и проектирующей прямой ВВ", параллельной А А". Это позволяет построить искомую точку В". Таким образом, данных оказалось достаточно, и соответственная точка В" представляет единственное решение.

Заметим, что перспективно-аффинное соответствие будет действительно реализовано, так как указанная конструкция не может привести к противоречию. Это легко проверить, сведя построение к аппарату параллельной проекции.

В самом деле, если перегнем чертеж 3 по линии хх так, чтобы плоскости w и w" образовали двугранный угол, то все проектирующие прямые (прямые, соединяющие соответственные точки, например ВВ") окажутся параллельными прямой АА" (в силу пропорциональности отрезков). Следовательно, построенное нами соответствие можно рассматривать как результат параллельной проекции.

Примечание. Если бы на чертеже 3 мы отнесли точку В к плоскости w", обозначив ее через С", то построение соответственной точки привело бы нас к точке С, которая, как видно из чертежа 3, не всегда совпадает с В". Можно доказать, что необходимое и достаточное условие такого совпадения, т. е. независимости перспективно-аффинного соответствия от того, отнесена ли точка к той или другой плоскости, заключается в делении отрезка А А" пополам в точке пересечения его с осью хх.

Следовательно, в этом случае соответствие является косой или прямой симметрией (относительно оси хх).

5. В дальнейшем исследовании перспективно-аффинного соответствия мы будем опираться на установленные выше свойства: 1) коллинеарность и 2) равенство простых отношений троек соответственных точек.

Заметим, что в перспективно-аффинных преобразованиях эти свойства выражают неизменность, или инвариантность, понятия прямой линии и понятия простого отношения трех точек прямой.

Из этих свойств можно вывести целый ряд других «инвариантов» перспективно-аффинного преобразования, которые, таким образом, уже не являются независимыми. Докажем прежде всего инвариантность параллелизма прямых. Предположим, что на плоскости w имеем две прямые а и b, которым на плоскости w" соответствуют прямые а" и b". Предположим, что прямые а и b параллельны (а || b). Докажем, что а "|| b". Применим доказательство «от противного». Предположим, что прямые а" и b" пересекаются, и обозначим точку пересечения буквой М" (черт. 4). Тогда в силу взаимно однозначного соответствия плоскостей w и w" точке М" плоскости w" соответствует точка М на плоскости w. Точка М должна принадлежать как прямой а, так и прямой b. Следовательно, М есть точка пересечения прямых а и b. Таким образом, приходим к противоречию. Предположение, что прямые а" и b" пересекаются, невозможно. Поэтому а" || b".

Таким образом, параллелизм прямых есть инвариантное свойство перспективно-аффинного преобразования.

Соединим В с D и проведем через С прямую СF || DВ. На плоскости w" прямой СF будет соответствовать прямая С"F" D"В" (в силу инвариантности параллелизма) и, следовательно, точке F будет соответствовать точка F". Зная, что простое отношение трех точек инвариантно, можем написать:

Таким образом, приходим к равенству:

Последнее показывает, что отношение двух параллельных отрезков есть инвариант перспективно-аффинного соответствия.

Если отрезки АВ и СD лежат на одной прямой (черт. 6), то их отношение также инвариантно в перспективно-аффинном соответствии. В самом деле, пусть РQ-произвольный отрезок, параллельный прямой АВ. Тогда имеем:

6. Переходим к рассмотрению площадей соответственных фигур. Докажем следующую лемму: Расстояния двух соответственных точек (А, А") до оси соответствия (хх) находятся в постоянном отношении, не зависящем от выбора пары соответственных точек. Доказательство. Предположим, что точкам А и В соответствуют точки А" и В" (черт. 7). Опуская из этих точек перпендикуляры на ось хх, получим расстояния их до оси. Расстояния будем всегда рассматривать положительными независимо от направления перпендикуляров.

Можем написать:

Но как видно из чертежа:

Полученное равенство и доказывает формулированную выше лемму.

Обозначим постоянное отношение расстояний соответственных точек через к. Докажем следующую теорему.

Отношение площадей двух соответственных треугольников постоянно и равно к.

Доказательство теоремы распадается на следующие случаи:

1. Треугольники имеют общую сторону на оси хх.

Такие треугольники представлены на чертеже 8. Отношение их площадей выразится следующим образом:

2. Треугольники имеют общую вершину на оси хх.

Таковы два треугольника на чертеже 9. Соответственные стороны ВС и В"С" этих треугольников должны пересекаться на оси хх (в точке X). Рассматриваемый случай сводится к предыдущему. В самом деле, на основании предыдущего можно написать:

Поэтому будем иметь:

3. Общий случай двух соответственных треугольников.

Пусть на чертеже 10 имеем два соответственных треугольника ABC и А"В"С". Рассмотрим один из этих треугольников, например ABC. Площадь этого треугольника можно представить следующим образом:

Все треугольники правой части этого равенства относятся к рассмотренным уже двум случаям, поэтому, применяя к ним доказанную теорему, можем переписать найденное выше равенство так:

Следовательно,

7. Выведенное нами свойство площадей двух соответственных треугольников легко распространить на случай соответственных многоугольников. В самом деле, каждый многоугольник может быть разбит на несколько треугольников, причем площадь многоугольника выразится суммой площадей составляющих его треугольников.

Для соответственного многоугольника получим аналогичное разбиение на треугольники. Если площади двух соответственных многоугольников обозначим буквами S и S", а площади двух соответственных составляющих треугольников -- буквами, то можем написать:

Так как, кроме того, для площадей соответственных треугольников имеем:

Таким образом, получаем:

Наконец, можно обобщить теорему об отношении площадей на случай двух площадей, ограниченных соответственными кривыми произвольного вида.

Обозначим площади, ограниченные двумя соответственными кривыми, через и. Впишем многоугольник в кривую, ограничивающую площадь, и обозначим площадь этого многоугольника буквой S. Будем увеличивать число сторон вписанного многоугольника до бесконечности при условии, что каждая сторона его стремится к нулю, тогда получим:

Для площади будем иметь аналогичный процесс: ,

где через S" обозначена площадь многоугольника, соответственного многоугольнику S. Так как в течение всего процесса (изменения многоугольников), согласно доказанной выше теореме, должны иметь:

то переход к пределу дает =k.

Следовательно,

Полученное свойство может быть представлено как инвариант перспективно-аффинного соответствия.

В самом деле, обозначим через и площади, ограниченные двумя кривыми произвольного вида, а через " и " - площади, ограниченные соответственными кривыми, тогда, по доказанному, будем иметь:

или, переставляя средние члены пропорции:

что может быть выражено следующими словами: отношение двух каких-либо площадей не изменяется (является инвариантом) в перспективно-аффинном соответствии.

Общее аффинное соответствие

Перспективно-аффинное соответствие двух плоскостей может быть получено с помощью параллельной проекции.

Рассмотрим теперь соответствие двух плоскостей, образованное многократным применением параллельного проектирования. Так, на чертеже 11 плоскость w проектируется параллельно прямой l на плоскость w". Эта плоскость проектируется параллельно прямой l" на плоскость w". Наконец, последняя проектируется параллельно прямой l" на плоскость w"". Таким образом, между плоскостями w и w""устанавливается соответствие, в котором точкам A,B,C первой плоскости соответствуют точки А"", В"", С" второй. Нетрудно убедиться в том, что это соответствие может не быть параллельной проекцией, но в то же время обладает инвариантными свойствами перспективно-аффинного соответствия. В самом деле, соответствие плоскостей w и w"" является цепью последовательных параллельных проектирований. Так как каждое такое проектирование сохраняет коллинеарность и простое отношение трех точек, то теми же свойствами должно, очевидно, обладать и результирующее соответствие плоскостей w и w""".

То же самое можно сказать и об остальных инвариантных свойствах, рассмотренных в случае перспективно-аффинного соответствия, которое оказывается, таким образом, лишь тем частным случаем, когда прямые, соединяющие соответственные точки, параллельны между собой:

По этой именно причине такое соответствие называется перспективно- аффинным.

Соответствие же плоскостей w и w""" называется аффинным. Мы пришли к этому понятию, воспользовавшись цепью перспективно-аффинных преобразований (или параллельных проекций). Если каждое из них обозначим буквами Р, Р",Р" а результирующее преобразование -- буквой А, можем представить аффинное преобразование А следующей символической формулой:

А = Р * Р" * Р",

в которой правая часть представляет собой «произведение» перспективно-аффинных преобразований, т. е. результат их последовательного применения.

Те же рассуждения можно было бы провести, не выходя из одной плоскости, для чего достаточно рассматривать цепь перспективно-аффинных преобразований плоскости в себя. Каждое из преобразований может быть задано осью и парой соответственных точек. Так, например, на чертеже 12 первое преобразование Р задано осью хх и парой (А, А"); второе Р" -- осью и парой (А", А"); третье Р" -- осью х"х" и парой (А"" А""). В результирующем преобразовании А точке А соответствует точка А"". На том же чертеже показано построение точки В"", соответственной точке В.

Изложенное показывает, что преобразования, полученные при помощи цепи параллельных проекций (или перспективно-аффинных преобразований), обладают свойствами коллинеарности и сохранения простого отношения трех точек.

Аффинное преобразование это такое преобразование, которое сохраняет параллельность линий, но не обязательно углы или длины.
В компьютерной графике все, что относится к двумерному случаю, принято обозначать символом 2D (2-dimension). Допустим, на плоскости введена прямолинейная координатная система. Тогда каждой точке М ставится в соответствие упорядоченная пара чисел (х, у) ее координат (рис. 1).


Указанные выше формулы можно рассматривать двояко: либо сохраняется точка и изменяется координатная система в этом случае произвольная точка М остается той же, изменяются лишь ее координаты (х, у) (х*, у*) , либо изменяется точка и сохраняется координатная система в этом случае формулы задают отображение, переводящее произвольную точку М(х, у) в точку М*(х*, у*), координаты которой определены в той же координатной системе. В дальнейшем будем интерпретировать формулы, как правило, что в заданной системе прямолинейных координат преобразуются точки плоскости.
В аффинных преобразованиях плоскости особую роль играют несколько важных частных случаев, имеющих хорошо прослеживаемые геометрические характеристики. При исследовании геометрического смысла числовых коэффициентов в формулах для этих случаев удобно считать, что заданная система координат является прямоугольной декартовой.
Наиболее часто применяются следующие приемы компьютерной графики: перенос, масштабирование, поворот, отражение. Алгебраические выражения и рисунки, поясняющие данные преобразования сведем в табл.1.

Аффинные преобразования на плоскости

Под переносом понимается смещение примитивов вывода на один и тот же вектор.
Масштабирование это увеличение или уменьшение всего изображения либо его части. При масштабировании координаты точек изображения умножаются на некоторое число.
Под поворотом понимается вращение примитивов вывода вокруг заданной оси. (В плоскости чертежа вращение происходит вокруг точки.)
Под отражением понимают получение зеркального отображения изображения относительно одной из осей (например X).
Выбор этих четырех частных случаев определяется двумя обстоятельствами:
1. Каждое из приведенных выше преобразований имеет простой и наглядный геометрический смысл (геометрическим смыслом наделены и постоянные числа, входящие в приведенные формулы).
2. Как доказывается в курсе аналитической геометрии, любое преобразование вида (*) всегда можно представить как последовательное исполнение (суперпозицию) простейших преобразований вида А, Б, В и Г (или части этих преобразований).
Таким образом, справедливо следующее важное свойство аффинных преобразований плоскости: любое отображение вида (*) можно описать при помощи отображений, задаваемых формулами А, Б, В и Г.
Для эффективного использования этих известных формул в задачах компьютерной графики более удобной является их матричная запись.
Для объединения этих преобразований вводят однородные координаты. Однородными координатами точки называется любая тройка одновременно не равных нулю чисел x1 , x2 , x3 , связанных с заданными числами x и y следующими соотношениями:



Тогда точка M(х, у) записывается как M(hX, hY, h), где h 0 является масштабным множителем. Двумерные декартовы координаты могут быть найдены как

В проективной геометрии эти координаты вводятся для устранения неопределенностей, возникающих при задании бесконечноудаленных (несобственных) элементов. Однородные координаты можно интерпретировать как вложение промасштабированной с коэффициентом h плоскости в плоскость Z= h в трехмерном пространстве.
Точки в однородных координатах записываются трехэлементными вектор-строками. Матрицы преобразования должны иметь размер 3х3.
При помощи троек однородных координат и матриц третьего порядка можно описать любое аффинное преобразование плоскости.
В самом деле, считая h = 1, сравним две записи: помеченную символом (*) и нижеследующую, матричную:

Теперь можно использовать композиции преобразований, применяя одно результирующее вместо ряда преобразований, следующих друг за другом. Можно, например, сложную задачу разбить на ряд простых. Поворот точки А около произвольной точки В можно разбить на три задачи:
перенос, при котором В= 0 (где 0-начало координат);
поворот;
обратный перенос, при котором точка В возвращается на место и т. д.
Композиция наиболее общего вида из операций Т, D, R, M имеет матрицу:

Верхняя часть размером 2х2 - объединенная матрица поворота и масштабирования, a tx и ty описывают суммарный перенос.
К изложенным фундаментальным преобразованиям сводятся следующие:
прокручивание перемещение окна на поверхности визуализации (если перемещение ограничено только направлениями вверх и вниз, то оно называется вертикальным прокручиванием);

трансфокация постепенное изменение масштаба изображения;
кувыркание динамическое изображение примитивов вывода, вращающихся вокруг некоторой оси, ориентация которой непрерывно изменяется в пространстве;
панорамирование постепенный перенос изображения с целью создания зрительного ощущения движения.

Любое сложное аффинное преобразование, можно представить композицией нескольких элементарных аффинных преобразований. Анализ показывает, что в 2D-графике существуют четыре элементарные аффинные преобразования – поворот, растяжение, отражение, перенос.

Поворот .

Рассмотрим поворот произвольной точки A вокруг начала координат на угол(Рис. 6).

Элементарное аффинное преобразование – поворот на угол .

Из аналитической геометрии известно, что поворот описывается следующим аффинным преобразованием.

(5)

Удобно координаты точки объединить в виде 2-х мерного вектора (столбика). Тогда переход точки A в положение точкиA

(6)

В этих обозначениях поворот можно выразить в виде матричного умножения.

(7)

Здесь R – матрица поворота (Rotation- вращение). Структуру этой матрицы получаем из уравнений (5).

(8)

Растяжение-сжатие, масштабирование.

Рассмотрим операцию растяжения-сжатия вдоль координатных осей с коэффициентами растяжения k 1 ,k 2 . Часто эту операцию называют масштабированием (Scaling- масштабирование). Для примера покажем (Рис. 7) растяжение отрезка с коэффициентами растяжения равными
.

Элементарное аффинное преобразование – растяжение с коэффициентами
.

Растяжение описывается следующим аффинным преобразованием.

(9)

Преобразование (9) можно выразить в виде матричного умножения.

(10)

Здесь S – матрица масштабирования. Структуру этой матрицы получаем из уравнений (9).

(11)

Отражение.

Рассмотрим операцию отражения относительно координатных осей. Для примера покажем (Рис. 8) отражение относительно оси x .

Элементарное аффинное преобразование – отражение относительно оси Ox.

Отражение описывается следующим аффинным преобразованием.

(12)

Преобразование (12) можно выразить в виде матричного умножения.

(13)

Здесь M – матрица отражения (Mirror– зеркало, отражение). Структуру этой матрицы получаем из уравнений (12).

(14)

Аналогично находим матрицу отражения относительно оси y .

(15)

Перенос.

Рассмотрим операцию переноса на вектор трансляции
. При этой операции любой объект перемещается без искажения, и любая сторона остается параллельной самой себе. Для примера покажем на рисунке 9 перенос отрезка.

Элементарное аффинное преобразование – перенос на вектор трансляции t .

Перенос описывается следующим аффинным преобразованием.

(16)

Преобразование (16) нам хотелось бы выразить в виде матричного умножения тип.

(17)

Здесь T – должна быть матрицей трансляции (Translation– трансляция, перенос). Однако невозможно построить матрицуT размерностью 22, чтобы одновременно удовлетворялись уравнения (16) и (17).

И все же, такую матрицу можно создать, если формально рассматривать аффинные 2D-преобразования в 3-х мерном пространстве. Для этого надо перейти к однородным координатам.

Однородные координаты.

Понятие однородных координат пришло к нам из проективной геометрии. Пусть точка A лежит на плоскости и имеет координаты (x ,y ). Тогдаоднородными координатами этой точки называется любая тройка чиселx 1 ,x 2 ,x 3 , связанных с заданными числамиx иy следующими соотношениями.

(18)

При решении задач компьютерной графики в качестве однородных координат обычно выбирают следующую тройку чисел.

Таким образом, произвольной точке A (x ,y ) плоскости ставится в соответствие точкаA (x ,y , 1) в пространстве. По сути дела мы рассматриваем аффинные преобразования в плоскостиz = 1 , как это показано на рисунке 10.

Аффинное преобразование в однородных координатах.

Координаты точек лежащих в плоскости z = 1 объединяем в виде 3-х мерных векторов. Переход точкиA в положение точкиA * можно представить, как преобразование векторов.

(20)

В этих обозначениях общее аффинное преобразование (1) можно выразить в виде матричного умножения.

(21)

Здесь матрица P размерности 33 является матрицей общего аффинного преобразования (1) и имеет вид.

(22)

Отметим важный момент , связанный с однородными координатами. Переход к трехмерным векторам и матрицам (20, 21, 22) можно было выполнить совершенно формально, не привязываясь к реальному трехмерному пространству (x,y,z). Этот подход позволяет для 3D-аффинных преобразований ввести однородные координаты и производить матричные умножения в 4-х мерном векторном пространстве.

Введенные раньше матрицы элементарных аффинных преобразований, теперь в однородных координатах примут следующий вид.

Матрица поворота R в однородных координатах будет иметь следующий вид.

(23)

Матрица растяжения S изменится следующим образом.

(24)

Матрицы отражения M относительно координатных осей будут иметь вид.

(25)

Матрица переноса T на вектор трансляциив однородных координатах будет иметь следующий вид.

(26)