Что такое поглощенная доза излучения? Радиация. Конвертер поглощённой дозы Что называют поглощенной дозой излучения

Вопросы.

1. В чем причина негативного воздействия радиации на живые существа?

Ионизирующее излучение проходя через живую ткань выбивает электроны из молекул и атомов, разрушает ее, что негативно сказывается на здоровье человека.

2. Что называется поглощенной дозой излучения? По какой формуле она определяется и в каких единицах измеряется?

3. При большей или меньшей дозе излучение наносит организму больший вред, если все остальные условия одинаковы?

При большей дозе облучения вред больше.

4. Одинаковый или различный по величине биологический эффект вызывают в живом организме разные виды ионизирующих излучений? Приведите примеры.

Разные виды ионизирующих излучений оказывают различный по величине биологический эффект. Для α- излучения он в 20 раз больше чем для γ- излучения.

5. Что показывает коэффициент качества излучения? Чему он равен для α-, β-, γ- и рентгеновского излучений?

Коэффициент качества К показывает, во сколько раз радиационная опасность от воздействия на живой организм данного вида излучения больше, чем от воздействия γ- излучения. Для одинаково поглощенной дозы β-, γ и рентгеновского излучения он принимается равным 1, а для α- излучения он равен 20.

6. В связи с чем и для чего была введена величина, называемая эквивалентной дозой излучения? По какой формуле она определяется и в каких единицах измеряется?

Эквивалентная доза излучения Н была введена для оценки меры воздействия разных видов излучения. Она вычисляется по формуле Н= D * К, где Н - эквивалентная доза излучения, D- поглощенная доза излучения, К- коэффициент качества, и в системе СИ её единицей измерения служит зиверт (Зв).

7. Какой еще фактор (помимо энергии, вида излучения и массы тела) следует учитывать при оценке воздействий ионизирующих излучений на живой организм?

При оценке воздействия ионизирующего излучения на живой организм следует принимать во внимание также время его воздействия, т.к. дозы облучения накапливаются, а также различную чувствительность частей тела к этому излучению, учитываемую с помощью коэффициента радиационного риска.

8. Какой процент атомов радиоактивного вещества останется через 6 суток, если период его полураспада равен 2 суткам?


9. Расскажите о способах защиты от воздействия радиоактивных частиц и излучений.

Для защиты от радиоактивности следует избегать контактов с такими веществами, не в коем случае не брать их в руки, остерегаться попадания внутрь. Во всех случаях радиоактивное излучение, в зависимости от своей природы, обладает разной проникающей способностью, для одних видов излучения достаточно избегать прямого контакта (α- излучение), защитой от других могут служить расстояние или тонкие слои поглотителя (стены домов, металлический корпус машины) или толстые слои бетона или свинца (жесткое γ- излучение).

Стали появляться и единицы их измерений. Например: рентген, кюри. Но они не были связаны какой-либо системой, а потому и называются внесистемными единицами. Во всем мире сейчас действует единая система измерений - СИ (система интернациональная). У нас она подлежит обязательному применению с 1 января 1982 г. К 1 января 1990 г. этот переход надо было завершить. Но в связи с экономическими и другими трудностями процесс затягивается. Однако вся новая аппаратура, в том числе и дозиметрическая, как правило, градуируется в новых единицах.

Единицы радиоактивности. В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин - один распад в секунду (расп./с) В системе СИ эта единица получила название беккерель (Бк). В практике радиационного контроля, в том числе и в Чернобыле , до последнего времени широко использовалась внесистемная единица активности - кюри (Ки). Один кюри - это 3,7.10 10 распадов в секунду.

Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы: Ки/т, мКи/г, кБк/кг и т.п. (удельная активность). На единицу объема: Ки/м 3 , мКи/л, Бк/см 3 и т.п. (объемная концентрация) или на единицу площади: Ки/км 2 , мКи/см 2 , Бк/м 2 и т.п.

Мощность дозы (мощность поглощенной дозы) - приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе Си - грей в секунду. Эта такая мощность поглощенной дозы излучения, при которой за 1 секунду в веществе создается доза излучения в 1 Гр.


На практике для оценки поглощенной дозы излучения до сих пор широко используют внесистемную единицу мощности поглощенной дозы - рад в час (рад/ч) или рад в секунду (рад/с). 1 Гр = 100 рад.

Эквивалентная доза - это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов излучений. Определяется она по формуле Д экв = Q . Д, где Д - поглощенная доза данного вида излучения, Q - коэффициент качества излучения, который для различных видов ионизирующих излучений с неизвестным спектральным составом принят для рентгеновского и гамма-излучения - 1, для бета-излучения - 1, для нейтронов с энергией от 0,1 до 10 МэВ - 10, для альфа-излучений с энергией менее 10 МэВ - 20. Из приведенных цифр видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают, соответственно, в 10 и 20 раз больший поражающий эффект. В системе СИ эквивалентная доза измеряется в зивертах (Зв).

Зиверт равен одному грею, деленному на коэффициент качества. При Q = 1 получаем

1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр.

Бэр (биологический эквивалент рентгена) - это внесистемная единица эквивалентной дозы, такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения.

Мощность эквивалентной дозы - отношение приращения эквивалентной дозы за какой-то интервал времени. Выражается в зивертах в секунду. Поскольку время пребывания человека в поле излучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в микрозивертах в час (мкЗв/час).

Согласно заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а в случаях кратковременного облучения - при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает ОЛБ.

Мощность эквивалентной дозы, создаваемая естественным излучением (земного и космического происхождения), колеблется в пределах 1,5 - 2 мЗв/год и плюс искусственные источники (медицина, радиоактивные осадки) от 0,3 до 0,5 мЗв/год. Вот и выходит, что человек в год получает от 2 до 3 мЗв. Эти цифры примерные и зависят от конкретных условий. По другим источникам, они выше и доходят до 5 мЗв/год.

Экспозиционная доза - мера ионизационного действия фотонного излучения, определяемая по ионизации воздуха в условиях электронного равновесия. В системе СИ единицей экспозиционной дозы является один кулон на килограмм (Кл/кг). Внесистемной единицей является рентген (Р), 1 Р = 2,58 . 10 -4 Кл/кг. В свою очередь 1 Кл/кг = 3,876 . 10 3 Р.

Мощность экспозиционной дозы - приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ - ампер на килограмм (А/кг). Однако в переходный период можно пользоваться внесистемной единицей - рентген в секунду (Р/сек).

Навигация по статье:

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения , иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

    0,57 мкЗв/час

  • В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час


  • предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников , является

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м 2)

Для оценки влияния радиации на вещество (не живые ткани) , применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани , применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется - поглощенной дозой .

Поглощенная доза - это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется - Грей (Гр).

1 Грей - это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза - это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется - Кулон/кг (Кл/кг) .

1 Кл/кг= 3,88*10 3 Р

Используемая внесистемная единица экспозиционной дозы - Рентген (Р):

1 Р = 2,57976*10 -4 Кл/кг

Доза в 1 Рентген - это образование 2,083*10 9 пар ионов на 1см 3 воздуха

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения . То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза - это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется - Зиверт (Зв) .

Используемая внесистемная единица эквивалентной дозы - Бэр (бэр) : 1 Зв = 100 бэр.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение "эквивалентной дозы радиации":

Эквивалентная доза радиации - это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).



В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу , которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.

Наиболее объективная характеристика это - эквивалентная доза радиации , измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах - мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год .

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения , величиной 5 мЗв/год . Используемая формулировка в документах - "приемлемый уровень" , очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый .

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников . Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час . Это подробно рассмотрено в статье . Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год , а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются .

Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 - 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час .
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа - радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников , является 1 мЗв/год.

Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час , действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь , по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.

Для справки:

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода - это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.

Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.

Эта статья посвящена теме поглощенной дозы излучения (и-ния), ионизирующему излучению и их видам. Здесь содержится информация о разнообразии, природе, источниках, способах вычисления, единицах измерения поглощенной дозы излучения и многом другом.

Понятие о поглощенной дозе излучения

Доза излучения - это величина, которой пользуются такие науки как, физика и радиобиология, для того чтобы оценить степень воздействия излучения ионизирующего типа на ткани живых организмов, процессы их жизнедеятельности, а также на вещества. Что называется поглощенной дозой излучения, каково ее значение, форма воздействия и разнообразие форм? Главным образом она представлена в форме взаимодействия между средой и ионизирующим излучением, а носит название ионизационного эффекта.

Поглощенная имеет свои способы и единицы измерения, а сложность и разнообразие протекающих процессов при воздействии излучения порождают некоторое видовое разнообразие в формах поглощенной дозы.

Ионизирующая форма излучения

Ионизирующее излучение - это поток различных видов элементарных частиц, фотонов или осколков образованных в результате атомного деления и способных вызывать ионизацию у вещества. Ультрафиолетовое излучение, как и видимая форма света к такому виду излучения не относится, также к ним не относятся излучение инфракрасного типа и выделяемое радиодиапазонами, что связано с их малым количеством энергии, не хватающим для создания атомной и молекулярной ионизации в главном состоянии.

Ионизирующий вид излучения, его природа и источники

Поглощенная доза ионизирующего излучения может измеряться в различных единицах СИ, и зависит от природы излучения. Самые значимые виды излучения: гамма-излучение, бета-частицы позитронов и электронов, нейтронное, ионное (включая альфа-частицы), рентгеновское, электромагнитное с короткими волнами (фотоны с высокой энергией) и мюонное.

Природа источников ионизирующего излучения может быть самой разнообразной, например: спонтанно произошедший радионуклидный распад, реакции термоядерного характера, лучи из космоса, искусственно созданные радионуклиды, реакторы ядерного типа, ускоритель элементарных частиц и даже аппарат, предназначенный для рентгена.

Каким образом воздействует ионизирующее излучение

В зависимости от механизма, по которому взаимодействуют, вещество и ионизирующее излучение, можно выделить непосредственный поток частичек заряженного типа и излучение, воздействующее косвенно, другими словами, фотонный или протонный поток, нейтральных частичек поток. Устройство образования позволяет выделить первичную и вторичную форму ионизирующего излучения. Мощность поглощенной дозы излучения определяется в соответствии с видом излучения, которому подвергается вещество, например, сила воздействия эффективной дозы лучей из космоса на земной поверхности, за пределами укрытия, равна 0.036 мкЗв/ч. Стоит также понимать, что тип измерения дозы и-ния и его показатель зависят от суммы некоторого множества факторов, говоря о космических лучах, это также зависит от широты геомагнитного вида и положения цикла одиннадцатилетней активности солнца.

Диапазон энергии ионизирующих частиц находится в диапазоне показателей от пары сотен электронвольт и доходит к показателям в 10 15-20 электрон-вольт. Длина пробега и способность к проникновению могут сильно отличаться, и лежать в пределах от нескольких микрометров, до тысяч и более километров.

Ознакомление с экспозиционной дозой

Эффект ионизации считается основной характеристикой формы взаимодействия излучения со средой. На начальном периоде становления радиационной дозиметрии в основном изучалось и-ние, электромагнитные волны которого лежали в пределах показателей между ультрафиолетовым и гамма-излучением, в силу того, что оно, широко распространенное в воздухе. Поэтому количественной мерой излучения для поля служил уровень ионизации воздуха. Такая мера стала основой для создания экспозиционной дозы, определяемой ионизацией воздуха в условиях обычного атмосферного давления, при этом сам воздух должен быть сухим.

Экспозиционная поглощенная доза излучения служит средством определения ионизирующих возможностей излучения рентгеновских лучей и гамма-лучей, показывает излучаемую энергию, что перетерпев превращение, стала кинетической энергией заряженных частичек в доле массы воздуха атмосферы.

Единица измерения поглощенной дозы излучения для экспозиционного типа - это кулон, компонент системы СИ, деленный на кг (Кл/кг). Вид внесистемной единицы измерения - рентген (Р). Один кулон/кг соответствует 3876 рентгенам.

Поглощенное количество

Поглощенная доза из-ния, как четкое определение, стало необходимым человеку в связи с разнообразием возможных форм воздействия того или иного излучения на ткани живых существ и даже неживых структур. Расширяясь, известный круг ионизирующих видов и-ния, показал что, степень влияния и воздействия может быть самой разнообразной и не подлежит обычному определению. Дать начало химико-физическим изменениям в тканях и вещества, подвергаемых облучению, может лишь конкретное количество поглощенной энергии излучения ионизирующего типа. Само число необходимое для запуска таких изменений зависит уже от вида излучения. Поглощенная доза и-ния возникла именно по этой причине. По сути, это энергетическая величина, которая подверглась поглощению единицей вещества и соответствует отношению энергии ионизирующего типа, что была поглощена и массой субъекта или объекта, поглощающего излучение.

Измеряют поглощенную дозу при помощи единицы грей (Гр) - составной части системы Си. Один грей - это величина дозы, способной передать один джоуль ионизирующего излучения 1 килограмму массы. Рад - внесистемная единица измерения, по величине 1 Гр соответствует 100 рад.

Поглощенная доза в биологии

Искусственное облучение тканей животного и растительного происхождения наглядно продемонстрировало, что разные типы радиации, находясь в одинаковой поглощенной дозе, могут по-разному, влиять на организм и все биологические и химические процессы, происходящие в нем. Это вызвано разницей создаваемого количества ионов более легкими и тяжелыми частицами. За один и тот же путь вдоль ткани протон может создать ионов больше, чем электрон. Чем плотнее собираются частицы в результате ионизации, тем сильнее будет разрушительное воздействие излучение на организм, в условиях одинаковой поглощенной дозы. Именно в соответствии с этим явлением, разности в силе воздействия различных видов излучения на ткани, было введено в использование обозначение эквивалентной дозы излучения. поглощенного излучения - это данные о полученном организмом излучении, рассчитанные путем перемножения показателя поглощенной дозы и особого коэффициента, который называют относительным биологическим коэффициентом эффективности (ОБЭ). Но также он часто именуется как коэффициент качества.

Единицы поглощенной дозы излучения эквивалентного типа измеряются в СИ, а именно в зивертах (Зв). Один Зв равен соответствующей дозе какого-либо излучения, которое поглощается одним килограммом ткани биологического происхождения и вызывает эффект равный воздействию 1 Гр излучения фотонного типа. Бэр - используют в качестве внесистемного измерительного показателя биологической (эквивалентной) поглощенной дозы. 1 Зв соответствует ста бэрам.

Эффективная форма дозы

Эффективная доза - это показатель величины, которым пользуются как мерой риска появления дальних последствий человеческого облучения, его отдельных частей организма начиная от тканей и заканчивая органами. При этом учитывается его индивидуальная радиочувствительность. Поглощенная доза излучения равна произведению биологической дозы в частях организма на определенный взвешиваемый коэффициент.

Разные человеческие ткани и органы имеют отличающуюся радиационную восприимчивость. Некоторые органы могут при одном значении эквивалентного показателя поглощенной дозы подвергаться появлению рака вероятнее, чем другие, например, шанс такой болезни в щитовидной меньше, чем в легких. Потому человек пользуется созданным коэффициентом радиационного риска. КРР - это средство для определения дозы и-ния воздействующей на органы или ткани. Суммарный показатель степени влияния на организм эффективной дозы рассчитывается умножением числа соответствующего биологической дозе на КРР конкретного органа, ткани.

Понятие о коллективной дозе

Существует понятие о групповой дозе поглощения, что является суммой индивидуального множества эффективных значений дозы в конкретной группе субъектов за определенный временной промежуток. Расчеты можно произвести для любых населенных пунктов, вплоть до государств или целых материков. Для этого умножают среднюю эффективную дозу и общее число субъектов, подверженных воздействию излучения. Измеряют такой показатель поглощенной дозы при помощи человеко-зиверта (чел-Зв.).

Помимо вышеупомянутых форм поглощенных доз, выделяют еще: коммитментную, пороговую, коллективную, предотвращаемую, предельно допустимую, биологическую дозу гамма-нейтронного типа излучения, летально-минимальную.

Сила воздействия дозы и единицы измерения

Показатель интенсивности облучения - подстановка конкретной дозы под влияние определенного излучения за временную измерительную единицу. Этой величине присуща разность дозы (эквивалентной, поглощенной и др.) деленной на единицу измерения времени. Существует множество специально созданных единиц.

Поглощенная доза излучения определяется по формуле подходящей конкретному излучению и типу поглощаемого количества излучения (биологическому, поглощенному, экспозиционному и т.д.). Существует множество способов их вычисления, основанных на разных математических принципах, и используются различные измерительные единицы. Примерами измерительных единиц служат:

  1. Интегральный вид - грей-килограмм в СИ, вне системы измеряется в рад-граммах.
  2. Эквивалентный вид - зиверт в СИ, вне системы измеряется - в бэрах.
  3. Экспозиционный вид - кулон-килограмм в СИ, вне системы измеряется - в рентгенах.

Существуют и другие измерительные единицы, соответствующие иным формам поглощенной дозы излучения.

Выводы

Анализируя данные статьи, можно заключить, что существует множество видов, как самого ионизирующего и-ния, так и форм его воздействия на вещества живой и неживой природы. Все они измеряются, как правило, в системе единиц СИ, и каждому виду соответствует определенная системная и несистемная измерительная единица. Источник их может быть самым разнообразным, как природным, так и искусственным, а само излучение играет важную биологическую роль.

Повреждения, вызванные в живом организме радиацией, изменения в облучаемых материалах с целью получения новых свойств будут тем больше, чем больше энергии излучение передает тканям, материалам. Количество такой переданной облучаемому объекту энергии характеризуют физической величиной, называемой дозой . Дозу излучения организм может получить от любого радионуклида или их смеси независимо от того, находятся ли они вне организма или внутри него (в результате попадания с пищей, водой или воздухом).

Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой .

Но по величине поглощенной дозы еще нельзя предсказать последствия облучения. При одинаковой поглощенной дозе α - излучение гораздо опаснее β - или γ - излучений. Если принять во внимание этот факт, то дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма. Пересчитанную таким образом дозу называют эквивалентной дозой ; ее измеряют в зивертах (Зв).

Следует учитывать, что одни части тела (органы, ткани) более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений.

Поэтому дозы облучения органов и тканей также следует учитывать с разными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу , отражающую суммарный эффект облучения для организма; она также измеряется в зивертах.

В дозиметрии определено еще и понятие мощность дозы - доза облучения (поглощенная или эквивалентная) за единицу времени. Длительные исследования действия излучений на организм человека позволили установить "безопасное" значение мощности эквивалентной дозы. Международной комиссией оно установлено равным 0.02 Зв в год для профессионалов, работающих с излучениями и проходящих регулярные медицинские обследования, и в четыре раза меньшим 0.005 Зв в год для остального населения. Эти значения безопасны в том смысле, что современная медицина не может обнаружить ни немедленных, ни отдаленных последствий такого облучения.

Единицы измерения доз ионизирующей радиации в системе СИ

Активность радионуклида измеряется в беккерелях (Бк, Bq): 1 Бк соответствует 1 распаду в 1 с для любого радионуклида.

Поглощенная доза равна количеству энергии, поглощенной единицей массы облучаемого тела, и измеряется в грэях (Гр, Gy): 1 Гр = 1 Дж/кг.

Эквивалентная доза определяется по поглощенной дозе умножением ее на коэффициент К , зависящий от вида излучения, и измеряется в зивертах (Зв, Zv): 1 Зв = K×1 Гр.


Приведем некоторые широко распространенные внесистемные единицы и их связь с единицами СИ:
кюри (Ки, Cu), единица активности изотопа:
1 Ки = 3.7·10 10 Бк;
рад (рад, rad), единица поглощенной дозы излучения:
1 рад = 0.01 Гр;
бэр (бэр, rem), единица эквивалентной дозы:
1 бэр = 0.01 Зв.