Все щелочные и щелочноземельные металлы. Щелочные и щелочноземельные металлы. Распространенные соединения щелочноземельных металлов

Рассмотрим химические свойства щелочноземельных металлов. Определим особенности их строения, получения, нахождения в природе, применение.

Положение в ПС

Для начала определим расположение этих элементов в Менделеева. Они располагаются во второй группе главной подгруппе. К ним относят кальций, стронций, радий, барий, магний, бериллий. Все они на содержат по два валентных электрона. В общем виде бериллий, магний и щелочноземельные металлы на внешнем уровне имеют ns2 электронов. В химических соединениях они проявляют степень окисления +2. Во время взаимодействия с другими веществами они проявляют восстановительные свойства, отдавая электроны с внешнего энергетического уровня.

Изменение свойств

По мере возрастания ядра атома бериллий, магний и усиливают свои металлические свойства, так как наблюдается возрастание радиуса их атомов. Рассмотрим физические свойства щелочноземельных металлов. Бериллий в обычном состоянии является металлом серого цвета со стальным блеском. Он имеет плотную гексагональную кристаллическую решетку. При контакте с кислородом воздуха, бериллий сразу же образует оксидную пленку, в результате чего снижается его химическая активность, образуется матовый налет.

Физические свойства

Магний в качестве простого вещества является белым металлом, образующим на воздухе оксидное покрытие. Он имеет гексагональную кристаллическую решетку.

Физические свойства щелочноземельных металлов кальция, бария, стронция схожи. Они представляют собой металлы с характерным серебристым блеском, покрывающиеся под воздействием кислорода воздуха желтоватой пленкой. У кальция и стронция кубическая гранецентрированная решетка, барий имеет объемно-центрированную структуру.

Химия щелочноземельных металлов основывается на том, что у них металлический характер связи. Именно поэтому они отличаются высокой электрической и тепло проводимостью. Температуры их плавления и кипения больше, чем у щелочных металлов.

Способы получения

Производство бериллия в промышленных объемах осуществляется путем восстановления металла из фторида. Условием протекания данной химической реакции является предварительное нагревание.

Учитывая, что щелочноземельные металлы в природе находятся в виде соединений, для получения магния, стронция, кальция проводят электролиз расплавов их солей.

Химические свойства

Химические свойства щелочноземельных металлов связаны с необходимостью предварительного устранения с их поверхности слоя оксидной пленки. Именно она определяет инертность данных металлов к воде. Кальций, барий, стронций при растворении в воде образуют гидроксиды, имеющие ярко выраженные основные свойства.

Химические свойства щелочноземельных металлов предполагают их взаимодействие с кислородом. Для бария продуктом взаимодействия является пероксид, для всех остальных после реакции образуются оксиды. У всех представителей данного класса оксиды проявляют основные свойства, только для оксида бериллия характерны амфотерные свойства.

Химические свойства щелочноземельных металлов проявляются и в реакции с серой, галогенами, азотом. При реакциях с кислотами, наблюдается растворение данных элементов. Учитывая, что бериллий относится к амфотерным элементам, он способен вступать в химическое взаимодействие с растворами щелочей.

Качественные реакции

Основные формулы щелочноземельных металлов, рассматриваемые в курсе неорганической химии, связаны с солями. Для выявления представителей данного класса в смеси с другими элементами, можно использовать качественное определение. При внесении солей щелочноземельных металлов в пламя спиртовки, наблюдается окрашивание пламени катионами. Катион стронция дает темный красный оттенок, катион кальция - оранжевый цвет, а катион бария зеленый тон.

Для выявления катиона бария в качественном анализе используют сульфат анионы. В результате данной реакции образуется сульфат бария белого цвета, который нерастворим в неорганических кислотах.

Радий является радиоактивным элементом, который в природе содержится в незначительных количествах. При взаимодействии магния с кислородом, наблюдается ослепительная вспышка. Данный процесс некоторое время применяли во время фотографирования в темных помещениях. Сейчас на смену магниевым вспышкам пришли электрические системы. К семейству щелочноземельных металлов относится бериллий, который реагирует со многими химическими веществами. Кальций и магний аналогично алюминию, могут восстанавливать такие редкие металлы, как титан, вольфрам, молибден, ниобий. Данные называют кальциетермией и магниетермией.

Особенности применения

Каково применение щелочноземельных металлов? Кальций и магний используют для изготовления легких сплавов и редких металлов.

К примеру, магний содержится в составе дюралюминия, а кальций - это компонент свинцовых сплавов, используемых для получения оболочек кабелей и создания подшипников. Широко применение щелочноземельных металлов в технике в виде оксидов. (оксид кальция) и жженая магния (оксид магния) требуются для строительной сферы.

При взаимодействии с водой оксида кальция происходит выделение существенного количества теплоты. (гидроксид кальция) применяется для строительства. Белая взвесь данного вещества (известковое молоко) применяют в сахарной промышленности для процесса очистки свекловичного сока.

Соли металлов второй группы

Соли магния, бериллия, щелочноземельных металлов можно получить путем взаимодействия с кислотами их оксидов. Хлориды, фториды, иодиды данных элементов являются белыми кристаллическими веществами, в основном хорошо растворимыми в воде. Среди сульфатов растворимостью обладают только соединения магния и бериллия. Наблюдается ее снижение от солей бериллия к сульфатам бария. Карбонаты практически не растворяются в воде либо имеют минимальную растворимость.

Сульфиды щелочноземельных элементов в незначительных количествах содержатся в тяжелых металлах. Если направить на них освещение, можно получить различные цвета. Сульфиды включаются в состав светящихся составов, именуемых фосфорами. Применяют подобные краски для создания светящихся циферблатов, дорожных знаков.

Распространенные соединения щелочноземельных металлов

Карбонат кальция является самым распространенным на земной поверхности элементом. Он является составной частью таких соединений, как известняк, мрамор, мел. Среди них основное применение имеет известняк. Этот минерал незаменим в строительстве, считается отличным строительным камнем. Кроме того, из данного неорганического соединения получают негашеную и гашеную извести, стекло, цемент.

Применение известковой щебенки способствует укреплению дорог, а благодаря порошку можно снизить кислотность почвы. представляет собой раковины древнейших животных. Данное соединение используют для изготовления резины, бумаги, создания школьных мелков.

Мрамор востребован у архитекторов, скульпторов. Именно из мрамора были созданы многие уникальные творения Микеланджело. Часть станций московского метро облицована именно мраморными плитками. Карбонат магния в больших объемах используется при изготовлении кирпича, цемента, стекла. Он нужен в металлургической промышленности для удаления пустой породы.

Сульфат кальция, содержащийся в природе в виде гипса (кристаллогидрата сульфата кальция), применяется в строительной отрасли. В медицине данное соединение применяется для изготовления слепков, а также для создания гипсовых повязок.

Алебастр (полуводный гипс) при взаимодействии с водой выделяет огромное количество тепла. Это также применяется в промышленности.

Английская соль (сульфат магния) применяется в медицине в виде слабительного средства. Данное вещество обладает горьким вкусом, оно обнаружено в морской воде.

«Баритовая каша» (сульфат бария) не растворяется в воде. Именно поэтому данную соль применяют в рентгенодиагностике. Соль задерживает рентгеновские лучи, что позволяет выявлять заболевания желудочно-кишечного тракта.

В составе фосфоритов (горной породы) и апатитов есть фосфат кальция. Они нужны для получения соединений кальция: оксидов, гидроксидов.

Кальций играет для живых организмов особое значение. Именно этот металл необходим для построения костного скелета. Ионы кальция необходимы для регулировки работы сердца, повышения свертываемости крови. Недостаток его вызывает нарушения в работе нервной системы, потере свертываемости, утрате способности рук нормально держать различные предметы.

Для того чтобы избежать проблем со здоровьем, каждые сутки человек должен потреблять примерно 1,5 грамма кальция. Основная проблема заключается в том, что для того, чтобы организм усваивал 0,06 грамма кальция, необходимо съедать 1 грамм жира. Максимальное количество данного металла содержится в салате, петрушке, твороге, сыре.

Заключение

Все представители второй группы главной подгруппы таблицы Менделеева необходимы для жизни и деятельности современного человека. Например, магний является стимулятором обменных процессов в организме. Он должен присутствовать в нервной ткани, крови, костях, печени. Магний является активным участником и фотосинтеза у растений, так как он является составной частью хлорофилла. Кости человека составляют примерно пятую часть от общего веса. Именно в них содержится кальций и магний. Оксиды, соли щелочноземельных металлов нашли разнообразное применение в строительной сфере, фармацевтике и медицине.

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами .

Все элементы IIA группы относятся к s -элементам, т.е. содержат все свои валентные электроны на s -подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO 2):

2Mg + O 2 = 2MgO

2Ca + O 2 = 2CaO

2Ba + O 2 = 2BaO

Ba + O 2 = BaO 2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me 3 N 2 .

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I 2 = MgI 2 – иодид магния

Са + Br 2 = СаBr 2 – бромид кальция

Ва + Cl 2 = ВаCl 2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно бо льшая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C 2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me 2 Si, с азотом – нитриды (Me 3 N 2), фосфором – фосфиды (Me 3 P 2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н 2 SO 4(разб.) = BeSO 4 + H 2

Mg + 2HBr = MgBr 2 + H 2

Ca + 2CH 3 COOH = (CH 3 COO) 2 Ca + H 2

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N 2 O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH 4 NO 3):

4Ca + 10HNO 3( разб .) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4Mg + 10HNO 3(сильно разб.) = 4Mg(NO 3) 2 + NН 4 NO 3 + 3H 2 O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H 2 SO 4 → BeSO 4 + SO 2 + 2H 2 O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы может происходить до SO 2 , H 2 S и S в зависимости от активности металла, температуры проведения реакции и концентрации кислоты:

Mg + H 2 SO 4( конц .) = MgSO 4 + SO 2 + H 2 O

3Mg + 4H 2 SO 4( конц .) = 3MgSO 4 + S↓ + 4H 2 O

4Ca + 5H 2 SO 4( конц .) = 4CaSO 4 +H 2 S + 4H 2 O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H 2 O = H 2 + K 2 — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H 2 + K 2 BeO 2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.

Щелочноземельные металлы представляют собой элементы, которые относятся ко второй группе периодической таблицы. Сюда можно отнести такие вещества, как кальций, магний, барий, бериллий, стронций и радий. Название этой группы свидетельствует о том, что в воде они дают щелочную реакцию.

Щелочные и щелочноземельные металлы, а точнее их соли, широко распространены в природе. Они представлены минералами. Исключением является радий, который считается довольно редким элементом.

Все вышеперечисленные металлы имеют некоторые общие качества, которые и позволили объединить их в одну группу.

Щелочноземельные металлы и их физические свойства

Практически все эти элементы представляют собой твердые вещества сероватого цвета (по крайне мере, при нормальных условиях и Кстати, физические свойства немного отличаются — эти вещества хотя и довольно стойкие, но легко поддаются воздействию.

Интересно, что с порядковым номером в таблице растет и такой показатель металла, как плотность. Например, в этой группе наименьшим показателем обладает кальций, в то время как радий по плотности сходен с железом.

Щелочноземельные металлы: химические свойства

Для начала стоит отметить, что химическая активность возрастает согласно порядковому номеру таблицы Менделеева. Например, бериллий является довольно стойким элементом. В реакцию с кислородом и галогенами вступает лишь при сильном нагревании. То же касается и магния. А вот кальций способен медленно окисляться уже при комнатной температуре. Остальные три представителя группы (радий, барий и стронций) быстро реагируют с кислородом воздуха уже при комнатной температуре. Именно поэтому хранят эти элементы, покрывая слоем керосина.

Активность оксидов и гидроксидов этих металлов возрастает по той же схеме. Например, гидроксид бериллия не растворяется в воде и считается амфотерным веществом, а считается довольно сильной щелочью.

Щелочноземельные металлы и их краткая характеристика

Бериллий представляет собой стойкий металл светло-серого цвета, обладающий высокой токсичностью. Впервые элемент был обнаружен еще в 1798 году химиком Вокленом. В природе существует несколько минералов бериллия, из которых самыми известными считаются следующие: берилл, фенакит, даналит и хризоберилл. Кстати, некоторые изотопы бериллия обладают высокой радиоактивностью.

Интересно, что некоторые формы берилла являются ценными ювелирными камнями. Сюда можно отнести изумруд, аквамарин и гелиодор.

Бериллий используют для изготовления некоторых сплавов, В этот элемент применяют для замедления нейтронов.

Кальций является одним из самых известных щелочноземельных металлов. В чистом виде он представляет собой мягкое вещество белого цвета с серебристым оттенком. Впервые чистый кальций был выделен в 1808 году. В природе этот элемент присутствует в форме таких минералов, как мрамор, известняк и гипс. Кальций широко применяется в современных технологиях. Его используют как химический источник топлива, а также в качестве огнеустойчивого материала. Ни для кого не секрет, что соединения кальция используются при производстве строительных материалов и лекарственных средств.

Этот элемент также содержится в каждом живом организме. В основном, он отвечает за работу двигательного аппарата.

Магний представляет собой легкий и достаточно ковкий металл с характерным сероватым цветом. В чистом виде был выделен в 1808 году, но его соли стали известными намного раньше. В магний содержится в таких минералах, как магнезит, доломит, карналлит, кизерит. Кстати, соль магния обеспечивает Огромное количество соединений этого вещества можно найти в морской воде.

Все элементы главных подгрупп I и II групп Периодической системы, а также водород и гелий относятся к s-элементам. Кроме водорода и гелия, все эти элементы - металлы. Металлы I группы Периодической системы называют щелочными, так как они реагируют с водой, образуя щелочи. Металлы II группы Периодической системы, за исключением бериллия и магния, называют щелочноземельными. Франций, завершающий I группу, и радий, завершающий II группу, - радиоактивные элементы.

Некоторые свойства s-металлов 3

Таблица 15.1

Металлический радиус, нм

Ионный радиус, нм

ЭО по Полингу

I группа

11 группа

а ПИ - потенциал (энергия) ионизации; ЭО - электроотрицательность.

Все s-металлы имеют на внешней оболочке по одному или по два электрона и могут легко их отдавать, образуя ионы с устойчивой электронной конфигурацией благородных газов. Высокая восстановительная активность этих металлов проявляется в очень низких потенциалах ионизации (ПИ) и небольшой электроотрицательности (ЭО) (табл. 15.1). Сравните потенциалы ионизации щелочных металлов и благородных газов (среди всех элементов у благородных газов самая низкая ЭО и самый высокий ПИ; см. табл. 18.1).

Физические свойства. При обычных условиях s-металлы находятся в твердом состоянии, образуя кристаллы с металлической связью. Все металлы I группы имеют объемноцентрированную кубическую решетку (ОЦК, см. § 4.4). Для бериллия и магния характерна гексагональная плотнейшая упаковка (ГПУ), у кальция и стронция гранецентрированная кубическая решетка (ГЦК), у бария объемно- центрированная кубическая (ОЦК).

Металлы I группы мягкие и имеют небольшую плотность по сравнению с другими. Литий, натрий и калий легче воды и плавают на ее поверхности, реагируя с ней. Металлы II группы тверже и плотнее щелочных. Низкие температуры плавления и кипения s-металлов (см. табл. 15.1) объясняются сравнительно слабой металлической связью в кристаллических решетках; энергия связи (в эВ): литий 1,65, натрий 1,11, калий 0,92, рубидий 0,84, цезий 0,79, бериллий 3,36, магний 1,53, кальций 1,85, стронций 1,70, барий 1,87.

Для сравнения энергии связи (в эВ): алюминий 3,38, цинк 1,35, железо 4,31, медь 3,51, серебро 2,94, титан 4,87, молибден 6,82, вольфрам 8,80.

Металлическая связь образуется делокализованными валентными электронами, удерживающими положительные ионы атомов металла вместе (см. § 3.6). Чем больше металлический радиус, тем больше делокализованных электронов, которые распределяются «тонким слоем» между положительными ионами, и тем меньше прочность кристаллической решетки. Этим и объясняются низкие температуры плавления и кипения металлов I и II групп. Температуры плавления и кипения элементов II группы в отличие от щелочных металлов изменяются несистематически, что объясняется различиями кристаллических структур (см. выше).

Распространенность в природе. Все s-металлы встречаются в природе только в виде соединений: ископаемые минеральные соли и их залежи (КС1, NaCl, СаС0 3 и другие) и ионов в морской воде. Кальций, натрий, калий и магний по распространенности на Земле занимают пятое, шестое, седьмое и восьмое места соответственно. Стронций распространен в умеренных количествах. Содержание остальных s-металлов в земной коре и океанических водах незначительно. Например, содержание натрия в земной коре 2,3% ив морской воде 1,1%, цезия в земной коре 3 10~ 4 % и в морской воде 3 10 -8 %.

Натрий, цезий и бериллий имеют только по одному стабильному изотопу, литий, калий и рубидий по два: |Li 7,5% и |Li 92,5%; 93,26% и ЦК 6,74%; f^Rb 72,17% и fpRb 27,83%. У магния три устойчивых изотопа (| 2 Mg 79,0%, j|Mg 10,0% и j|Mg 11,0%). У других щелочноземельных металлов число стабильных изотопов больше; главные из них: 4 °Са 96,94% и ЦСа 2,09%; ||Sr 82,58%, 8 |Sr 9,86% и ||Sr 7,0%; 1 ||Ва 71,7%, 18 |Ва 11,23%, 18 ®Ва 7,85% и 18 |Ва 6,59%.

К семейству щёлочноземельных эле­ментов относят кальций, стронций, барий и радий. Д. И. Менделеев включал в это семей­ство и магний. Щёлочноземельными элементы именуются по той причине, что их гидроксиды, подобно гидро­ксидам щелочных металлов, раство­римы в воде, т. е. являются щелочами. «…Земельными же они названы пото­му, что в природе они встречаются в состоянии соединений, образующих нерастворимую массу земли, и сами в виде окисей RO имеют землистый вид», - пояснял Менделеев в «Основах химии».

Общая характеристика элементов II а группы

Металлы главной подгруппы II группы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами.

Легко отдают два валентных электрона, и во всех соединениях имеют степень окисления +2

Сильные восстановители

Активность металлов и их восстановительная способность увеличивается в ряду: Be–Mg–Ca–Sr–Ba

К щёлочноземельным металлам относят только кальций, стронций, барий и радий, реже магний

Бериллий по большинству свойств ближе к алюминию

Физические свойства простых веществ


Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип., потенциалами ионизации, плотностями и твердостью.

Химические свойства щелочноземельных металлов + Be

1. Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием щелочей:

Mg + 2H 2 O – t° → Mg(OH) 2 + H 2 ­

Ca + 2H 2 O → Ca(OH) 2 + H 2 ­

2. Реакция с кислородом.

Все металлы образуют оксиды RO, барий-пероксид – BaO 2:

2Mg + O 2 → 2MgO

Ba + O 2 → BaO 2

3. С другими неметаллами образуют бинарные соединения:

Be + Cl 2 → BeCl 2 (галогениды)

Ba + S → BaS (сульфиды)

3Mg + N 2 → Mg 3 N 2 (нитриды)

Ca + H 2 → CaH 2 (гидриды)

Ca + 2C → CaC 2 (карбиды)

3Ba + 2P → Ba 3 P 2 (фосфиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все щелочноземельные металлы растворяются в кислотах:

Ca + 2HCl → CaCl 2 + H 2 ­

Mg + H 2 SO 4 (разб.) → MgSO 4 + H 2 ­

5. Бериллий растворяется в водных растворах щелочей:

Be + 2NaOH + 2H 2 O → Na 2 + H 2 ­

6. Летучие соединения щёлочноземельных металлов придают пламени характерный цвет:

соединения кальция - кирпично-красный, стронция - карминово-красный, а бария - желтовато-зелёный.

Бериллий, также как и литий, относится к числу s-элементов. Четвертый электрон, появляющийся в атоме Be, помещается на 2s-орбитали. Энергия ионизации бериллия выше, чем у лития, из-за большего заряда ядра. В сильных основаниях он образует ион-бериллат ВеО 2- 2 . Следовательно, бериллий ‑ металл, но его соединения обладают амфотерностью. Бериллий, хотя и металл, но значительно менее электроположительный, по сравнению с литием.

Высокой энергией ионизации атома бериллий заметно отличается от остальных элементов ПА-подгруппы (магния и щелочноземельных металлов). Его химия во многом сходна с химией алюминия (диагональное сходство). Таким образом, это элемент с наличием у его соединений амфотерных качеств, среди которых преобладают все же основные.

Электронная конфигурация Mg: 1s 2 2s 2 2p 6 3s 2 по сравнению с натрием имеет одну существенную особенность: двенадцатый электрон помещается на 2s-орбитали, где уже имеется 1е — .

Ионы магния и кальция ‑ незаменимые элементы жизнедеятельности любой клетки. Их соотношение в организме должно быть строго определённым. Ионы магния участвуют в деятельности ферментов (например, карбоксилазы), кальция – в построении скелета и обмена веществ. Повышение содержания кальция улучшает усвоение пищи. Кальций возбуждает и регулирует работу сердца. Его избыток резко усиливает деятельность сердца. Магний играет отчасти роль антагониста кальция. Введение ионов Mg 2+ под кожу вызывает наркоз без периода возбуждения, паралич мышц, нервов и сердца. Попадая в рану в форме металла, он вызывает долго незаживающие гнойные процессы. Оксид магния в лёгких вызывает так называемую литейную лихорадку. Частый контакт поверхности кожи с его соединениями приводит к дерматитам. Самые широко используемые в медицине соли кальция: сульфат СаSO 4 и хлорид CaCL 2 . Первый используется для гипсовых повязок, а второй применяется для внутривенных вливаний и как внутреннее средство. Он помогает бороться с отёками, воспалениями, аллергией, снимает спазмы сердечно-сосудистой системы, улучшает свертываемость крови.

Все соединения бария, кроме BaSO 4 , ядовиты. Вызывают менегоэнцефалит с поражением мозжечка, поражение гладких сердечных мышц, паралич, а в больших дозах – дегенеративные изменения печени. В малых же дозах соединения бария стимулируют деятельность костного мозга.

При введении в желудок соединений стронция наступает его расстройство, паралич, рвота; поражения по признакам сходны с поражениями от солей бария, но соли стронция менее токсичны. Особую тревогу вызывает появление в организме радиоактивного изотопа стронция 90 Sr. Он исключительно медленно выводится из организма, а его большой период полураспада и, следовательно, длительность действия могут служить причиной лучевой болезни.

Радий опасен для организма своим излучением и огромным периодом полураспада (Т 1/2 = 1617 лет). Первоначально после открытия и получения солей радия в более или менее чистом виде его стали использовать довольно широко для рентгеноскопии, лечения опухолей и некоторых тяжёлых заболеваний. Теперь с появлением других более доступных и дешевых материалов применение радия в медицине практически прекратилось. В некоторых случаях его используют для получения радона и как добавку в минеральные удобрения.

В атоме кальция завершается заполнение 4s-орбитали. Вместе с калием он образует пару s-элементов четвертого периода. Гидроксид кальция ‑ довольно сильное основание. У кальция - наименее активного из всех щелочноземельных металлов - характер связи в соединениях ионный.

По своим характеристикам стронций занимает промежуточное положение между кальцием и барием.

Свойства бария наиболее близки к свойствам щелочных металлов.

Бериллий и магний широко используют в сплавах. Бериллиевые бронзы – упругие сплавы меди с 0,5-3% бериллия; в авиационных сплавах (плотность 1,8) содержится 85-90% магния («электрон»). Бериллий отличается от остальных металлов IIА группы – не реагирует с водородом и водой, зато растворяется в щелочах, поскольку образует амфотерный гидроксид:

Be+H 2 O+2NaOH=Na 2 +H 2 .

Магний активно реагирует с азотом:

3 Mg + N 2 = Mg 3 N 2 .

В таблице приведена растворимость гидроксидов элементов II группы.

Традиционная техническая проблема – жесткость воды , связанная с наличием в ней ионов Mg 2+ и Ca 2+ . Из гидрокарбонатов и сульфатов на стенках нагревательных котлов и труб с горячей водой оседают карбонаты магния и кальция и сульфат кальция. Особенно мешают они работе лабораторных дистилляторов.

S-элементы в живом организме выполняют важную биологическую функцию. В таблице приведено их содержание.

Во внеклеточной жидкости содержится в 5 раз больше ионов натрия, чем внутри клеток. Изотонический раствор («физиологическая жидкость») содержит 0,9% хлорида натрия, его применяют для инъекций, промывания ран и глаз и т. п. Гипертонические растворы (3-10% хлорида натрия) используют как примочки при лечении гнойных ран («вытягивание» гноя). 98% ионов калия в организме находится внутри клеток и только 2% во внеклеточной жидкости. В день человеку нужно 2,5-5 г калия. В 100 г кураги содержится до 2 г калия. В 100 г жареной картошки – до 0,5 г калия. Во внутриклеточных ферментативных реакциях АТФ и АДФ участвуют в виде магниевых комплексов.

Ежедневно человеку требуется 300-400 мг магния. Он попадает в организм с хлебом (90 мг магния на 100 г хлеба), крупой (в 100 г овсяной крупы до 115 мг магния), орехами (до 230 мг магния на 100 г орехов). Кроме построения костей и зубов на основе гидроксилапатита Ca 10 (PO 4) 6 (OH) 2 , катионы кальция активно участвуют в свертывании крови, передаче нервных импульсов, сокращении мышц. В сутки взрослому человеку нужно потреблять около 1 г кальция. В 100 г твердых сыров содержится 750 мг кальция; в 100 г молока – 120 мг кальция; в 100 г капусты – до 50 мг.