Активация перекисного окисления липидов. Перекисное окисление липидов (ПОЛ). Системы защиты клеток от активных форм кислорода

Перекисному окислению липидов подвергаются полиненасыщенные ЖК, свободные или входящие в состав омыляемых липидов, при взаимодействии с активными формами кислорода.

Реакции переписного окисления липидов (ПОЛ) являются свободнорадикальными и по¬стоянно происходят в организме. Свободнора-дикальное окисление нарушает структуру мно¬гих молекул. В белках окисляются некоторые аминокислоты. В результате разрушается струк¬тура белков, между ними образуются ковалент-ные «сшивки», всё это активирует протеолити-ческие ферменты в клетке, гидролизующие повреждённые белки. Активные формы кисло¬рода легко нарушают и структуру ДНК. Неспе¬цифическое связывание Fe2+ молекулой ДНК облегчает образование гидроксильных радика¬лов, которые разрушают структуру азотистых оснований. Но наиболее подвержены действию активных форм кислорода жирные кислоты, содержащие двойные связи, расположенные через СН2-группу. Именно от этой СН2-группы свободный радикал (инициатор окисления) лег¬ко отнимает электрон, превращая липид, содер¬жащий эту кислоту, в свободный радикал.

ПОЛ - цепные реакции, обеспечивающие расширенное воспроизводство свободных ра¬дикалов, частиц, имеющих неспаренный элек¬трон, которые инициируют дальнейшее распро¬странение перекисного окисления.

В. ПОВРЕЖДЕНИЕ КЛЕТОК В РЕЗУЛЬТАТЕ

ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ

Активные формы кислорода повреждают структуру ДНК, белков и различные мембран¬ные структуры клеток. В результате появления в гидрофобном слое мембран гидрофильных зон за счёт образования гидропероксидов жир¬ных кислот в клетки могут проникать вода, ионы натрия, кальция, что приводит к набуха¬нию клеток, органелл и их разрушению. Акти¬вация перекисного окисления характерна для многих заболеваний: дистрофии мышц (болезнь Дюшенна), болезни Паркинсона, при которых ПОЛ разрушает нервные клетки в стволовой части мозга, при атеросклерозе, развитии опу¬холей. Перекисное окисление активируется также в тканях, подвергшихся сначала ишемии, а затем реоксигенации, что происходит, напри¬мер, при спазме коронарных артерий и после¬дующем их расширении.

Такая же ситуация возникает при образова¬нии тромба в сосуде, питающем миокард. Формирование тромба приводит к окклюзии про¬света сосуда и развитию ишемии в соответству¬ющем участке миокарда (гипоксия ткани). Если принять быстрые лечебные меры по разрушению тромба, то в ткани восстанавливается снабже¬ние кислородом (реоксигенация). Показано, что в момент реоксигенации резко возрастает об¬разование активных форм кислорода, которые могут повреждать клетку. Таким образом, даже несмотря на быстрое восстановление кровооб¬ращения, в соответствующем участка миокарда происходит повреждение клеток за счёт актива¬ции перекисного окисления.

Изменение структуры тканей в результате

ПОЛ можно наблюдать на коже: с возрастом

увеличивается количество пигментных пятен

на коже, особенно на дорсальной поверхности

ладоней. Этот пигмент называют липофусцин,

представляющий собой смесь липидов и бел¬

ков, связанных между собой поперечными ко-

валентными связями и денатурированными в

результате взаимодействия с химически актив¬

ными группами продуктов ПОЛ. Этот пигмент

фагоцитируется, но не гидролизуется фермен¬

тами лизосом, и поэтому накапливается в клет¬

ках, нарушая их функции. °

ПОЛ происходит не только в живых организ¬мах, но и в продуктах питания, особенно при

Регуляция ПОЛ

Процессы ПОЛ усиливаются при избытке катехоламинов (стресс), гипоксии, ишемии, повышенном содержании активных форм О 2 , снижении антиоксидантной защиты, повышенном содержании ненасыщенных жирных кислот.

Биологическое значение ПОЛ

    Модифицирует физико-химические свойства биомембран: изменяется проницаемость, активность мембранных ферментов.

    Регулирует окислительное фосфорилирование.

    Синтез ряда гормонов (стероидных), простагландинов.

    Контроль клеточного деления.

  1. Участвует в адаптации организма.

Повышение ПОЛ при патологии приводит к:

    Разрушению, фрагментации клеточных мембран, повреждению и гибели клеток.

    ПОЛ модифицирует ЛП, особенно ЛПНП. Они легче проникают в сосудистую стенку, лучше захватываются макрофагами, что ускоряет развитие атеросклероза.

    Продукт ПОЛ малоновый диальдегид (МДА) - токсичен, канцерогенен, мутагенен.

    ПОЛ ускоряет процесс старения организма.

Перекисное окисление (автоокисление) липидов при контакте с кислородом не только приводит в негодность пищевые продукты (прогоркание), но и вызывает также повреждение тканей in vivo, способствуя развитию опухолевых заболеваний. Повреждающее действие инициируется свободными радикалами , возникающими в период образования перекисей жирных кислот, содержащих двойные связи, чередующиеся с метиленовыми мостиками (такое чередование имеется в природных полиненасыщенных жирных кислотах) (рис. 15.28). Перекисное окисление липидов является цепной реакцией, обеспечивающей расширенное воспроизводство свободных радикалов, которые инициируют дальнейшее распространение перекисного окисления. Весь процесс можно представить следующим образом.

1) Инициация: образование R из предшественника

2) Развитие реакции:

3) Терминация (прекращение реакции):

Поскольку гидроперекись ROOH выступает как предшественник в процессе инициации, перекисное окисление липидов является разветвленной цепной реакцией, потенциально способной вызвать значительное

Рис. 15.27. Долихол (-спирт).

Рис. 15.28. Перекисное окисление липидов. Реакция инициируется светом или ионами металлов. Малоновый диальдегид, образующийся только из жирных кислот с тремя и более двойными связями, используется как показатель перекисного окисления липидов вместе с этаном, образующимся в результате отщепления концевого двухуглеродного фрагмента о -жирных кислот, и пентаном, образующимся при опцеплении концевого пятиуглеродного фрагмента о -жирных кислот.

повреждения. Для регулирования процесса перекисного окисления жиров и человек, и природа используют антиоксиданты. В пищевые продукты с этой целью добавляют пропилгаллат, бутилированный гидроксианизол и бутилированный гидрокситолуол. К природным антиоксидантам относятся жирорастворимый витамин Е (токоферол), а также водорастворимые ураты и витамин С. -Каротин является антиоксидантом только при низких значениях Антиоксиданты распадаются на два класса: 1) превентивные антиоксиданты, снижающие скорость инициации цепной реакции, и 2) гасящие (прерывающие цепь) антиоксиданты, препятствующие развитию цепной реакции. К первым относятся каталаза и другие пероксидазы, разрушающие ROOH, и агенты, образующие хелатные комплексы с металлами -ДТП А (диэтилентриаминпентаацетат) и ЭДТА (этилендиаминтетраацетат). В качестве прерывающих цепь антиоксидантов часто выступают фенолы или ароматические амины. В условиях in vivo главными прерывающими цепь антиоксидантами являются супероксиддисмутаза (см. с. 126), которая в водной фазе улавливает супероксидные свободные радикалы а также витамин Е, улавливающий свободные радикалы ROO в липидной фазе, и, возможно, мочевая кислота.

Перекисное окисление in vivo катализируется также гемовыми соединениями и липокснгеназамн, нахолящимися в составе тромбоцитов, лейкоцитов и т.д.

Рис. 15.29. а-Токоферол.

Витамин E (а-токоферол)

Существует несколько природных токоферолов. Все они являются 6-гидроксихроманами или токолами с изопреноидными заместителями (рис. 15.29). а-Токоферол наиболее широко распространен и имеет наибольшую биологическую активность как витамин.

Витамин Е выполняет по крайней мере две метаболические функции. Во-первых, он служит наиболее сильнодействующим природным жирорастворимым антиоксидантом и, во-вторых, выполняет специфическую, хотя и не до конца понятную, роль в метаболизме селена.

Витамин Е, по всей видимости, является первым эшелоном защиты клеточных и субклеточных мембранных фосфолипидов от перекисного окисления. Фосфолипиды митохондрий, эндоплазматического ретикулума и плазматических мембран обладают специфическим сродством к а-токоферолу, поэтому витамин, по-видимому, концентрируется в составе этих мембран. Токоферолы действуют как антиоксиданты, прерывающие цепи окисления благодаря их способности переносить фенольный водород на пероксидный радикал (рис. 15.30). Феноксирадикал является резонансно-стабилизированной и относительно нереакционноспособной структурой, за исключением его взаимодействия с другими пероксидными радикалами. Таким образом, а-токоферол почти не вовлекается в процесс цепной реакции окисления; при окислении хроманового кольца и боковой цепи а-токоферола образуется продукт, не являющийся свободным радикалом (рис. 15.31). Этот продукт образует конъюгат с глюкуроновой кислотой и экскретируется с желчью. Антиоксидантное действие а-токоферола сохраняется при высоких концентрациях кислорода, поэтому неудивительно, что

Рис. 15.30. Гасящее цепную реакцию антиоксидантное действие токоферолов по отношению к перекисным радикалам

Рис. 15.31. Продукт окисления а-токоферола. Нумерация атомов позволяет сопоставить их положение в продукте и исходном соединении.

витамин накапливается в богатых липидами областях, контактирующих со средой, где поддерживается высокое парциальное давление кислорода, - в мембранах эритроцитов и клеток дыхательных путей.

Однако даже и в присутствии адекватного количества витамина Е происходит образование некоторого количества перекисей. Вторым эшелоном защиты мембран от разрушающего действия перекисей (см. с. 204) служит глутатионпероксидаза, в состав которой входит селен. Таким образом, действие витамина Е и селена состоит, по-видимому, в предохранении клеточных и субклеточных компонентов от повреждения перекисями, обеспечивая целостность органелл и препятствуя тем самым развитию патологических состояний при действии физических, химических или других стрессорных факторов.


Незначительная часть кислорода, поступающего из воздуха в организм, превращается в активные формы - свободные радикалы, обладающие высокой химической активностью, вызывающие окисление белков, липидов, нуклеиновых кислот. Чаще всего окислению подвергается липидный слой биологических мембран. Такое окисление называется перекисным окислением липидов (ПОЛ).

Физические нагрузки, свойственные современному спорту, приводят к чрезмерному образованию активных форм кислорода и значительному росту скорости ПОЛ. Практически любая спортивная работа протекает в условиях повышенного потребления кислорода, а перенасыщение организма (или отдельных органов, или тканей) кислородом способствует появлению свободных радикалов кислорода и интенсификации перекисных процессов. В ациклических видах спорта (особенно в спортивных играх и единоборствах) характер мышечной деятельности резко и многократно меняется. Такие изменения сопровождаются несоответствием между продолжающимся повышенным поступлением кислорода и снижением его потребления митохондриями мышечных клеток. Подобное несоответствие вызывает относительную гипероксию в мышечной ткани, что, несомненно, приводит к еще большему образованию свободных радикалов и дальнейшему нарастанию их повреждающего воздействия на биомембраны. К повышению скорости свободнорадикального окисления также приводит ацидоз (повышение кислотности), возникающий у спортсменов вследствие накопления в миоцитах молочной кислоты. И, наконец, приближающиеся к пределу функциональных возможностей физические нагрузки современного спорта, его высокая мотивированность и эмоциональность позволяют выявить в деятельности спортсменов многие характерные черты стресса. А стресс и, в частности, стрессорные гормоны оказывают значительное влияние на развитие в организме свободнорадикального окисления.

Чрезмерная активация ПОЛ оказывает негативное влияние на мышечную деятельность. Так, повышение проницаемости мембран нервных волокон и саркоплазматического ретикулума миоцитов, вызываемое ПОЛ, затрудняет передачу двигательных нервных импульсов и, тем самым, снижает сократительные возможности мышцы. Повреждающее воздействие перекисного окисления на цистерны, содержащие ионы кальция, неизбежно приводят к нарушению функции кальциевого насоса и ухудшению релаксационных свойств мышц. При повреждении митохондриальных мембран снижается эффективность окислительного фосфорилирования (тканевого дыхания), что ведет к уменьшению аэробного энергообеспечения мышечной работы. Повышение проницаемости оболочки мышечных клеток - сарколеммы - может привести к потере мышечными клетками многих важных веществ, которые будут уходить из них в кровь и лимфу. Таким образом, в масштабе всего организма активация ПОЛ сказывается на возможностях аэробного энергопроизводства, на сократительных способностях мышц и, следовательно, на работоспособности спортсмена в целом.

Все вышесказанное позволяет считать процессы свободнорадикального окисления, и, в первую очередь, липидов биологических мембран, важнейшим дезадаптационным фактором, обусловливающим развитие утомления и снижение физической работоспособности. В настоящее время для предупреждения утомления и сохранения физической работоспособности в спортивной практике применяются различные экзогенные средства, способные повышать емкость антиоксидантной системы организма. К ним прежде всего относится a-токоферол - естественный антиоксидант организма, ЛАТЛ, Эйферол.

Во время мышечной работы в организме возникают и нарастают разнообразные биохимические и функциональные сдвиги, приводящие, в конечном счете, к снижению физической работоспособности и развитию утомления. Устранение этих негативных изменений осуществляется после работы, в процессе восстановления.

Срочное восстановление:

На этом этапе устраняются продукты анаэробного обмена, главными из которых являются креатин и лактат.

Креатин образуется и накапливается в мышечных клетках во время физических нагрузок за счет креатинфосфатной реакции:

Креатинфосфат + АДФ - Креатин + АТФ

Эта реакция обратима. Во время отдыха она протекает в обратном направлении:

Креатин + АТФ(избыток) - Креатинфосфат + АДФ

Обязательным условием превращения креатина в креатифосфат является избыток АТФ, который создается в мышцах после работы, когда уже нет больших энергозатрат на мышечную деятельность. Источником АТФ при восстановлении является тканевое дыхание, протекающее с достаточно высокой скоростью и потребляющее значительное количество кислорода. В качестве окисляемых субстратов чаще используются жирные кислоты. На устранение креатина требуется не более 5 мин. В течение этого времени наблюдается повышенное потребление кислорода, называемое алактатным кислородным долгом.

Другой продукт анаэробного обмена - лактат - образуется и накапливается в результате функционирования гликолитического пути ресинтеза АТФ. Устранение молочной кислоты происходит преимущественно во внутренних органах, так как она легко выходит из мышечных клеток в кровяное русло. Лактат, поступающий из крови в миокард, подвергается аэробному окислению и превращается в конечные продукты СО 2 и Н 2 О. Такое окисление требует кислорода и сопровождается выделением энергии, которая используется для обеспечения работы сердечной мышцы.

Значительная часть лактата из крови попадает в печень и превращается в глюкозу (глюконеогенез). Синтез глюкозы из лактата требует энергии АТФ, источником которого служит тканевое дыхание. Другая часть лактата из крови поступает в почки. В почках, так же как и в миокарде, лактат может окисляться с участием кислорода до углекислого газа и воды, давая этому органу энергию. Часть лактата выводится с мочой. Для устранения избытка лактата обычно требуется не более 1,5-2 часов.

В этот период в организме восполняются запасы химических соединений и восстанавливаются внутриклеточные структуры, разрушенные или поврежденные во время мышечной работы. Основными биохимическими процессами, составляющими отставленное восстановление являются синтезы гликогена, жиров и белков.

Синтез гликогена протекает в мышцах и в печени, причем в первую очередь накапливается мышечный гликоген. Синтезируется гликоген, главным образом, из глюкозы, поступающей в организм с пищей. Предельное время восстановления в организме запасов гликогена - 24-36 часов. Синтез жиров осуществляется в жировой ткани. Вначале образуются глицерин и жирные кислоты, затем они соединяются в молекулу жира. Жир также образуется в стенке тонкой кишки путем ресинтеза из продуктов переваривания пищевого жира. С током лимфы, а затем крови ресинтезированный жир поступает в жировую ткань. Для восполнения запасов жира необходимо не более 36-48 часов. Синтез белков, в основном, идет в мышечной ткани. Часть аминокислот (незаменимых) обязательно должна поступать с пищей. Максимальное время синтеза белков 48-72 часа.

Отставленное восстановление также включает и восстановление (репарацию) поврежденных внутриклеточных структур. Это касается миофибрилл, митохондрий, различных клеточных мембран. По времени это самый длительный процесс - 72-96 часов.

Все биохимические процессы, составляющие отставленное восстановление, протекают с потреблением энергии, источником которой является АТФ, возникающий за счет тканевого дыхания. Поэтому для фазы отставленного восстановления характерно несколько повышенное потребление кислорода, но не такое выраженное, как при срочном восстановлении /24/.

Хаотропный эффект избытка жирных кислот и лизофосфатидов поддерживает активацию перекисного окисления липидов (ПОЛ) , инициируемого накоплением в гипоксической клетке активных форм кислорода (АФК). Генерация последних связана с Са 2+ - зависимым повреждением митохондрий и формированием избытка доноров электронов – восстановленных кофакторов.

Образование активных (токсичных) форм кислорода (в невозбужденном состоянии кислород нетоксичен) связано с особенностями его молекулярной структуры: О 2 содержит два неспаренных электрона с параллельными спинами, которые не могут образовывать термодинамически стабильную пару и располагаются на разных орбиталях. Каждая из этих орбиталей может принять еще один электрон. Таким образом, полное восстановление молекулы кислорода происходит в результате четырех одноэлектронных переносов:

Е - е - е - е - , Н +

О 2 О 2 - Н 2 О 2 `ОН + Н 2 О 2Н 2 О

Образующиеся в ходе неполного восстановления молекул кислорода супероксид (О 2 -), пероксид (Н 2 О 2) и гидроксильный радикал (`ОН) активные формы кислорода , являются окислителями, что представляет серьезную опасность для многих структурных компонентов клетки (Авдеева Л.В., Павлова Н.А., Рубцова Г.В., 2005). Особенно активен гидроксильный радикал ( OH), взаимодействующий с большинством органических молекул. Он отнимает у них электрон и инициирует таким образом цепные реакции окисления.

Основной путь образования АФК в большинстве клеток – утечка электронов из цепи их передачи (дыхательной цепи) и непосредственное взаимодействие этих электронов с кислородом (Губарева Л.Е., 2005). В качестве еще двух источников могут выступать реакции с участиемоксидаз , использующих молекулярный кислород как акцептор электронов и восстанавливающих его до Н 2 О или Н 2 О 2 и реакции с участиемоксигеназ, включающих один (монооксигеназы) или два (диоксигеназы) атома кислорода в образующийся продукт реакции. В условиях дефицита в тканях кислорода, т.е. в ситуации, когда «спрос» (восстановленные кофакторы) превышает «предложение» (количество молекул кислорода), вероятность усиления образования АФК резко возрастает. Инициируемые ими свободнорадикальные реакции, приводят к повреждению клеточных и субклеточных структур, включая митохондрии, молекулы ДНК и белка. И хотя вклад АФК в развитие гипоксического некробиоза (в отличие от реперфузионного синдрома) расценивается в качестве доминирующего механизма не всеми авторами (Зайчик А.Ш., Чурилов Л.П., 1999), тем не менее их участие в активации свободно-радикальных процессов в клетке, включая ПОЛ, является решающим.

Следует отметить, что ПОЛ представляя собой саморазвивающуюся цепную реакцию, постоянно протекает в клетке, играя роль необходимого звена в ее жизнедеятельности и в адаптационных реакциях. Благодаря перекисному окислению в молекуле фосфолипидов клеточных мембран, содержащих во втором положении жирную кислоту, появляются полярные гидроперекисные группировки (гидроперекиси липидов), обладающие детергентным действием. Появление таких группировок увеличивает подвижность полипептидных цепей, т.е. облегчает конформационные изменения молекул белков, что сопровождается ростом активности мембраносвязанных ферментов, к которым по существу относятся все ферментные системы клетки. И лишь чрезмерная активация ПОЛ, затрагивающая более 3-5% фосфолипидов мембран, превращает его из регуляторного механизма в звено патогенеза их повреждения при клеточной гибели (Ю.А. Владимиров, 1987; 2000).

В результате активации ПОЛ, инициируемого АФК, и прежде всего – гидроксильным радикалом ( OH), происходит образование новых вторичных радикалов: липидного (L ), алкоксильного (LO ), перекисного (LOO ). Рис. 28.

Рис. 28. Перекисное окисление липидов и образование вторичных радикалов

(Ю.А. Владимиров, 2001)

Химическая активность этих вторичных органических радикалов ниже, чем у гидроксильного радикала ( OH), но они активно вовлекаются в цепную реакцию ПОЛ, поддерживая и усугубляя повреждения липидного бислоя клеточных мембран.

Модифицирующие эффекты ПОЛ в отношении фосфолипидов определяют цепь дальнейших событий (Архипенко Ю.В. с соавт., 1983; Меерсон Ф.З., 1989; Владимиров Ю.А., 2001). Прежде всего, в молекулах фосфолипидов, содержащих во втором положении жирную кислоту, появляется полярная гидроперекисная группировка (рис. 29).

При этом накопление гидроперекисей липидов сопровождается уменьшением количества ненасыщенных липидов. При умеренной активации ПОЛ, как отмечалось выше, появление в микроокружении интегральных белков полярных продуктов ПОЛ, обладающих детергентным действием, вызывает увеличение подвижности полипептидной цепи, что, как правило, сопровождается увеличением каталитической активности ферментов. При избыточной активации ПОЛ главное значение приобретает уменьшение количества непредельных фосфолипидов.

Рис. 29. Образование гидроперекиси фосфолипида, начальный этап про­цесса ПОЛ

(Ф.З. Меерсон, 1984).

· Значительное уменьшение содержания непредельных фосфолипидов в мембране под влиянием ПОЛ, повышает регидность (микровязкость) ее липидного бислоя, что сопровождается снижением конформационной подвижности полипептидных цепей белков, встроенных в мембрану (эффект «вмораживания»). Поскольку такая подвижность необходима для нормального функционирования ферментов, рецепторов и каналоформеров, их функциональный ответ ингибируется (рис. 30).


Рис. 30 Изменение активности Са-АТФазы в мембранах саркоплазматического

ретикулума в результате модификации липидного окружения этого фер­мента

процессом ПОЛ (Ф.З. Меерсон, 1984)

А - исходное состояние; Б - умеренная активация Са-АТФазы; В - ингибирование-Са-АТФазы.

· Окисленные в ходе активации ПОЛ фосфолипиды подвергаются латеральной диффузии вдоль мембраны и образуют ассоциаты (кластеры), фиксированные взаимодействием фосфолипидов между собой и молекулами воды. Эти участки мембраны приобретают гидрофильность. Располагаясь друг против друга в каждом из монослоев липидного бислоя, такие ассоциаты образуют каналы в мембране, увеличивая ее проницаемость для воды, кальция и других ионов (рис. 31).


Рис. 31.Схема образования перекисных кластеров и фрагментация мембраны при индукции перекисного окисления липидов (Ф.З. Меерсон, 1984)

Светлый треугольник - гидроперекисная группа.

· Образующиеся продукты распада гидроперекисей фосфолипидов (малоновый, глутаровый и др. диальдегиды) взаимодействуют со свободными аминогруппами мембранных белков, образуя межмолекулярные сшивки и инактивируя эти белки (рис. 32). In vivo этот процесс приводит к образованию т.н. оснований Шиффа пигмента изнашивания липофусцина.

Рис. 32. Образование сшивок и ингибирование мембранных белков-ферментов в результате активации ПОЛ (Ф.З. Меерсон, 1984)

Последний представляет собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с химически активными группами (диальдегидами) продуктов ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, и поэтому накапливается в клетках в виде пигментных пятен, особенно на дорзальной поверхности ладоней у пожилых людей.

Гидроперекись (2), образовавшаяся в результате реакции фосфолипидов (1) с молекулярным кислородом, распадается на фосфолипид с укороченной углеводородной цепью во втором положении, сходный с лизофосфолипидами (3) и короткий углеводородный фрагмент – диальдегид (4). Взаимодействие бифункциональной по своей природе молекулы диальдегида с аминогруппами одновременно двух молекул белков приводит к формированию сшивки (5).

· Под влиянием ПОЛ происходит окисление сульфгидрильных (-SH) групп мембранных белков: ферментов, ионных каналов и насосов, что приводит к падению их активности.

· Образование полярных продуктов окисления способствует возрастанию на мембране отрицательного поверхностного заряда, обусловливающего фиксацию на ней полиэлектролитов. Среди последних – некоторые белки и пептиды, формирующие белковые поры – один из факторов снижения электрической стабильности мембран.

· Увеличение полярности внутренней оболочки мембраны обусловливает проникновение воды в липидный бислой – т.н. «водную коррозию мембраны».

· «Выталкивание» из мембраны части окислившихся полиненасыщенных жирных кислот приводит к уменьшению площади ее липидного бислоя.

Таким образом, на этом этапе развития гипоксического повреждения клеток ключевым звеном патогенеза выступает дезорганизация липидного бислоя мембран, осуществляемая при участии ионов кальция и липидной триады: активации липаз и фосфолипаз; детергентного действия избытка жирных кислот и лизофосфолипидов, а также активации перекисного окисления липидов.

Существенный вклад в эту дезорганизацию вносят также: механическое (осмотическое) растяжение мембран и адсорбция на липидном бислое полиэлектролитов , способствующие увеличению их порозности. В совокупности указанные нарушения обусловливают снижение электрической прочности мембран и возникновение электрического пробоя липидного бислоя собственным мембранным потенциалом (рис. 33). Последний рассматривается как терминальный механизм нарушения барьерной функции мембраны (Владимиров Ю.А., 2001).

Этот этап патогенетической цепи повреждения клеток при гипоксии, характеризующийся нарастающей утратой барьерной и матричной функций мембран , определяет переход обратимых изменений в клетке – в необратимые .

Последующее развитие событий связано с формированием повреждений клеточных структур, непосредственно приводящих к клеточной гибели. Существенно, что механизмы этих повреждающих эффектов также тесно связаны с повышенным содержанием в цитозоле ионов Са 2+ .

Патогенетические последствия избытка ионов кальция в заключительной стадии гипоксического повреждения клеток (стадия некробиоза) не ограничиваются активацией липаз и фосфолипаз. Ионы Са 2+ прямо участвуют в прямых эффектах повреждения клеточных структур и апоптотической гибели клеток. К числу этих эффектов относятся:

· Разрушение цитоскелета, которое связано с Са 2+ -зависимой активацией кальпаинов. Происходит деструкция некоторых белков цитоплазмы (β-актин, фодрин), что вызывает деформацию клеток, ограничивающую возможность их взаимодействия с микроокружением, а также способность к восприятию регуляторных сигналов. Слабость цитоскелета способствует дезинтеграции некоторых надмолекулярных комплексов в клетке, в частности, отсоединению рибосом от мембран шероховатого эндоплазматического ретикулума. В результате происходит насыщение цитоплазмы белковыми молекулами, подвергающихся деградации.

· Механическое повреждение клеточных структур, обусловленное Са 2+ активацией сократительной функции миофибрилл с одновременной утратой ими способности к расслаблению. Такие контрактурные сокращения сопровождаются механическим повреждением сократительных структур клетки.

· Омыление и эндогенный детергентный эффект. Накопление в клетке жирных кислот в присутствии избытка ионов Са 2+ (и Na +) приводит к образованию мыл – солей высших жирных кислот. По этой причине гидролиз сложноэфирных связей называется омылением . Образование мыл в цитозоле резко увеличивает его детергентную активность которая в буквальном смысле растворяет липидные мембраны (Зайчик А.Ш., Чурилов Л.П., 1999). Мыла, разрушая мембраны органоидов, обрушивают на клетку удар гидролаз, активных радикалов и других метаболитов, которые до этого момента были изолированы в различных отсеках клетки. Этот эндогенный эффект имеет решающее значение в формировании финальной стадии клеточной гибели.

· Наряду с участием в некробиозе, ионы кальция участвуют в реализации механизмов апоптотической гибели клеток. Среди последних: повышение активности Са 2+ -зависимых эндонуклеаз и кальпаинов. Подобная активация несет в себе угрозу для клетки, инициируя ее апоптотическую гибель либо вследствие фрагментации ДНК (эндонуклеазами ), либо в результате протеолиза антиапоптотических белков (bcl-2) кальпаинами . Апоптозу может способствовать и кальпаининдуцированная деградация протеинкиназы С(ПКС), реализующую, в основном, антиапоптотические эффекты и повышающую устойчивость клеток к токсическим продуктам обмена.

· Более того, избыток ионов Са 2+ сам способствует образованию токсических продуктов, в роли которых могут, в частности, выступать молекулы оксида азота в высоких концентрациях, создаваемых Са 2+ -активацией индуцибельной NO-синтазы. Наиболее ярко такой эффект проявляется при т.н. глутаматной гибели нейронов , возникающей при гипоксии (ишемии мозга). Инициация развития событий в этом случае связана с дефицитом энергии в нейронах, выходом ионов калия, деполяризацией мембран и повышением внутриклеточного пула Са 2+ в результате длительного открытия потенциал зависимых кальциевых каналов (рис. 34).

Рис. 34. Механизм развития глутаматной гибели нейронов при гипоксии

Следствием избытка ионов кальция в цитоплазме является повышенное выделение нейромедиатора (глутамата) глутаматергическими нейронами в синаптическую щель. Восприятие данного сигнала постсинаптическими нейронами осуществляется с помощью НМДА-рецепторов (наиболее хорошо изученный подтип рецепторов глутамата с высоким сродством к синтетической аминокислоте Н-метил-Д-аспартату), чувствительность которых к медиатору в условиях гипоксии значительно возрастает (Крыжановский Г.Н., 1997). Результатом «глутаматной бомбардировки» (Акмаев И.Г., 1996; Акмаев И.Г., Гриневич В.В., 2001) постсинаптического нейрона является открытие в нем ионных каналов, приводящее к увеличению поступления кальция в клетку и активация нейрональной NO-синтазы (NOS). Продуцируемый под ее влиянием оксид азота, имея малый размер и липофильную природу молекулы, диффундирует во внеклеточное пространство и поступает через мембраны в близлежащие клетки (нейроны), оказывая на них токсическое влияние. Основу этого токсического влияния составляет энергетический дефицит клеток. Механизм формирования такого дефицита связан со способностью NO вызывать S-нитрозилирование клеточных железосодержащих белков (аконитаза ЦТК, комплексы I-III цепи переноса электронов в МТХ) и их инактивацию. Кроме того, под влиянием NO происходит рибозилирование и нитрозилирование глицеральдегид-3-фосфатдегидро-геназы , обусловливающей торможение гликолиза. Наконец, при взаимодействии NO с другим радикалом – О 2 - образуется пероксинитрит-анион (ONOO -), вызывающий необратимое ингибирование железосодержащих белков.

За счет образования ONOO - возможно включение апоптотического механизма гибели клеток путем реализации следующего каскада:

Особенностью глутаматной гибели нейронов является отсутствие гибели самих NO-продуцирующих нейронов, оказывающихся защищенными от токсического действия NO. Механизм этой защиты связывают с активацией супероксиддисмутазы (СОД) и (или) с переходом NO в окисленную форму (NO +). По сути здесь прослеживается прямая аналогия с макрофагами, которые, продуцируя NO, сами проявляют к нему устойчивость.

Таким образом, гибель клетки при гипоксии представляет собой закономерное развертывание цепи событий, включающих формирование энергодефицита, ингибирование основных метаболических путей, активацию липидной триады и последующее необратимое повреждение клеточных структур. Центральным звеном патогенеза этих событий является повышение внутриклеточной концентрации ионов кальция, а главной мишенью – клеточные мембраны и, прежде всего – митохондрии.

Последовательность рассмотренных изменений при гипоксии (аноксии) одинакова для самых различных тканей. Об этом свидетельствуют опыты со срезами тканей, изолированными клетками и изолированными органеллами (Владимиров Ю.А., 2001). Рис. 35.

Различие состоит лишь в скорости протекания этих процессов, которая при температуре тела человека в 2-3 раза выше. Кроме того, эта скорость различна для разных тканей и с наибольшей быстротой указанные процессы протекают в ткани мозга, с меньшей – в печени, с еще более низкой скоростью – в мышечной ткани.

Рис. 35. Последовательность нарушений в клетках печени при аноксии

по Ю.А. Владимирову, 2001

XIV. ГИПЕРОКСИЯ

Гипероксия – повышенное поступление кислорода в организм . В отличие от гипоксии, гипероксия всегда носит экзогенный характер и в естественных условиях практически не встречается. В связи с этим, адаптивные механизмы к данному состоянию эффективны лишь в условиях относительно невысокой кислородной нагрузки, определяемой величиной парциального давления кислорода и продолжительностью его действия. Примером такой зависимости может служить кривая безопасных сроков дыхания кислородом человека (рис. 36).

Рис. 36.Граница действия кислорода на человека (по Hartmann, 1966).

Цитируется по А.Г. Жиронкину (1979).

По оси абсцисс - длительность дыхания кислородом, часы; по оси ординат - парциальное дав­ление кислорода, атм.

Как видно из рисунка, зона т.н. «физиологического действия кислорода» наиболее продолжительна при небольших значениях его парциального давления (около 0,5 атм.), когда защитно-приспособительные реакции в состоянии обеспечить сохранение нормального напряжения кислорода в тканях. Основу этих реакций составляют механизмы, направленные на ограничение поступления и транспорта кислорода. На это, в частности, направлена первичная реакция системы внешнего дыхания, в виде снижения легочной вентиляции и показателя минутного объема дыхания.

Данные сдвиги являются следствием прекращения в условиях повышенного поступления кислорода нормальной естественной импульсации с артериальных хеморецепторов. Вместе с тем, ограничение вентиляции не только снижает поступление кислорода в организм, но и приводит к развитию гиперкапнии. Последняя определяет вторую фазу реакции системы дыхания, характеризующуюся усилением вентиляции, направленным на снижение РаСО 2 и ликвидацию газового ацидоза. Важнейшим сдвигом со стороны системы кровообращения при гипероксии является закономерное сужение мелких кровеносных сосудов, сопровождающееся ростом периферического сопротивления, замедлением общего и локального кровотока, повышением диастолического давления. Еще одним проявлением реакции со стороны этой системы служит брадикардия, регистрируемая до появления признаков кислородного отравления. Изменения со стороны системы крови в ответ на гипероксию проявляются в начальный период преходящей эритропенией и снижением уровня гемоглобина, что обусловлено перемещением тканевой жидкости в кровь и депонированием эритроцитов (Жиронкин А.Г., 1979).

При возрастании парциального давления кислорода во вдыхаемой газовой смеси, на первый план выступает его токсическое действие, поскольку защитный эффект приспособительных реакций минимизируется. В этой зоне кислород уже играет роль фактора не обеспечивающего, а угнетающего окислительные процессы в тканях. Что касается механизмов самого токсического влияния, то сегодня наиболее принятой является точка зрения R. Gershman (1964), связывающего этот механизм с образованием активных форм кислорода и с активацией свободнорадикального окисления.

В условиях перенасыщения тканей кислородом, т.е. в ситуации, когда «предложение» (избыток кислорода) превышает «спрос» (количество восстановленных кофакторов, подлежащих окислению), вероятность повышенного образования АФК возрастает. Соответственно, усиливается свободнорадикальное окисление, сопровождающееся повреждением клеточных и субклеточных структур, и, прежде всего, митохондрий.

Очевидно, что дезорганизация и повреждение митохондрий будут сопровождаться нарушением цепи транспорта электронов и окислительного фосфорилирования. Т.е. нарушениями, определяющими суть понятия «гипоксия». Соответственно, такое состояние называется гипероксической гипоксией.

Повреждение клеточных и субклеточных структур при активации свободнорадикальных процессов, приводит к развитию многочисленных нарушений специфических функций различных органов и систем. Так, ингибирование ферментов в головном мозге снижает продукцию γ-аминомасляной кислоты – важнейшего тормозного медиатора, что служит одним из механизмов развития при гипероксии судорожного синдрома кортикального генеза . Нарушение продукции сурфактанта легочным эпителием обусловливает резкое уменьшение компенсаторных резервов системы внешнего дыхания, повышая поверхностное натяжение альвеол, и способствуют появлению микроателектазов . В тяжелых случаях нарушение продукции сурфактанта может сопровождаться отеком легких . У некоторых детей первого года жизни дыхание чистым кислородом приводит к развитию респираторного дистресса – бронхопульмональной дисплазии (Маляренко Ю.Е., Пятин В.Ф., 1998). Активация свободнорадикального окисления при гипероксигенации лежит в основе формирования дефектов зрения у маленьких детей, в связи с нарушением созревания фоторецепторов.

Наряду с АФК токсическое действие кислорода опосредуется и чрезмерным напряжением некоторых защитно-приспособительных реакций. К числу таких реакций, в частности, относится длительный спазм сосудов (реакция на гипероксию). У недоношенных детей он способствует развитию ретролентальной фиброплазии (образованию фиброзной ткани за хрусталиком), приводящей к слепоте. Аналогичный спазм сосудов в легких обусловливает легочную гипертензию, расстройства микроциркуляции и повреждение легочного эпителия – нарушений, предрасполагающих к развитию воспаления .

Указанные обстоятельства заставляют ограничивать применение кислорода для лечебных целей, при которых РО 2 не должен превышать 380 мм рт. ст. (Березовский В.А., 1975).

Особую чувствительность к токсическому действию избытка кислорода проявляет ткань мозга плода , которая характеризуется значительно более низким напряжением кислорода, чем церебральные структуры зрелого организма . «Этот факт не является результатом несовершенства процессов кислородного снабжения организма во внутриутробном периоде, а напротив, отражает сбалансированность этих процессов, обеспечивающих, с одной стороны, адекватную оксигенацию мозга, а с другой - защиту его от избыточного потока О 2 » (Рагузин А.В., 1990). Экспериментально установлено, что напряжение кислорода тканей фетального мозга является относительно стабильным параметром гомеостаза внутриутробно развивающегося организма, который мало меняется даже при значительных сдвигах кислородного режима беременных животных . Такое постоянство РО 2 тканей мозга плода при сдвигах РаО 2 (от 50 до 370 мм рт. ст.) материнского организма определяется механизмами, локализованными прежде всего в маточно-плацентарной области, но не системными реакциями дыхания и кровообращения. К рождению формирование механизмов стабилизации кислородного гомеостаза мозга не завершено, что служит причиной более значимого (чем у взрослых) увеличения РО 2 церебральных структур новорожденных при ингаляции чистым кислородом. Подобный прирост РО 2 сопровождается активацией свободнорадикального окисления в ткани мозга и развитием негативных качественных изменений параметров условно оборонительных рефлексов в зрелом возрасте (Рагузин А.В., 1990). В связи с данным положением обосновывается подход к коррекции тяжелой степени гипоксии новорожденных с использованием для ингаляции не чистого кислорода, а газовых смесей с его пониженным содержанием.

Судорожная форма кислородного отравления возникает при остром отравлении кислородом и известна с конца XIX столетия как симптом Бэра , впервые обнаруженный и описанный этим автором. Судороги возникают, как правило, при дыхании кислородом под давлением, превышающим 3-4 атм. и очень напоминают по своему течению эпилептические судорожные припадки.

Клинически различают три стадии этого процесса (Черешнев В.А., Юшков Б.Г., 2001):

I стадия – учащение дыхания и сердцебиения, повышение артериаль­ного давления, расширение зрачков, усиление активности с отдельными по­дергиваниями мышц.

II стадия – стадия судорог, похожих на эпилептические с клоническими и тоническими проявлениями.

III стадия – терминальная – ослабление судорог с расстройством ды­хания, которое переходит на отдельные вдохи. Смерть наступает от парали­ча дыхательного центра.

За несколько десятков лет, прошедших с момента появления концепции перекисного окисления липидов (ПОЛ), она так и не подтверждена практикой, являющейся критерием истинности науки. Возникает ряд вопросов, требующих ответа. Если этот феномен так важен, например для развития атеросклероза (как утверждают авторы), то почему антиоксиданты не предупреждают, не останавливают патологический процесс, а в то же время меры по снижению уровня холестерина в крови являются эффективными? В каких исследованиях in vivo подтверждены «лавинообразные», «цепные» разрушения клеточных мембран в процессе ПОЛ? Как могут существовать нормальные показатели продуктов ПОЛ в крови при хаотическом процессе? Возможны ли такие разрушительные не подконтрольные ДНК процессы в клетке, организме вообще? Почему распространенные представления о ПОЛ не соответствуют современным биохимическим требованиям для заключения о подлинности существования изучаемого метаболического процесса в организме? Нужно ли витамины Е, С, А (бета-каротин) именовать антиоксидантными? Ведь они имеют большое количество других не менее важных биологических функций, а их дефицит приводит к нарушениям различных видов обмена в организме. Эти факты, а также, что самое важное, - отсутствие эффекта от применения антиоксидантов при различных заболеваниях (например при атеросклерозе) и не редко возникновение антиэффекта, требуют переосмысления теории ПОЛ . Многие положения теории ПОЛ вступают в противоречие с фундаментальными законами биохимии. Возникает, в частности, вопрос, как выражена степень реакций ПОЛ в детском возрасте, когда преобладают анаболические процессы, или в среднем возрасте, в условиях практического равновесия анаболической и катаболической фаз метаболизма. Ответ на эти вопросы в литературе отсутствует. Для суждения о степени изменений ПОЛ клиницисты часто определяют в крови диеновые конъюгаты и малоновый диальдегид. При этом дают нормативы этих показателей, что противоречит самой концепции, поскольку существование нормальных параметров процесса свидетельствует о его генетической обусловленности, а не стихийности.

Реакции окисления происходят в клетке в соответствующих структурах: митохондриях, эндоплазматическом ретикулуме (микросомальное окисление). В митохондриях в цепи переноса электронов возможно неполное восстановление кислорода и образование перекиси водорода, супероксидного радикала . Образование активных форм кислорода (АФК) в митохондриях, по мнению А. Ленинджера, является нормальным физиологическим явлением, что, однако, требует объяснения предназначения и биологической целесообразности этого процесса. (В фагоцитах «дыхательный взрыв» играет важную роль в обезвреживании бактерий и разрушении неинфекционного материала). Уменьшение движения потока электронов по окислительно-восстановительной цепи митохондрий приводит к уменьшению образования АФК. АФК постоянно производятся при взаимодействии кислорода с коферментами флавиновых ферментов. Они образуются в эндоплазматическом ретикулуме в коротких цепях переноса электронов. В цикле реакций микросомального окисления с участием цитохрома Р450 в качестве промежуточных продуктов возникают супероксидные радикалы и перекись водорода. Супероксид образуется и в других электронно-транспортных клеточных системах. Образование АФК происходит под действием ионизирующего и ультрафиолетового излучения, гипербарической оксигенации, токсических веществ . В пероксисомах продуцируется перекись водорода, которая эффективно обезвреживается. Перекись водорода может восстановиться супероксидом с образованием гидроксильного радикала. Гидроксильный радикал, взаимодействуя с супероксидом, может образовать синглетный кислород, хотя течение этой реакции in vivo не доказано . Считают , что синглетный кислород в обычных биологических условиях организма не играет существенной роли. Благодаря тому, что ферменты, образующие перекись водорода, и каталаза локализованы внутри пероксисом, остальное содержимое клетки защищено от разрушающего воздействия перекиси. Все АФК нестабильны и короткоживущие.

В соответствии с концепцией, образующиеся свободные радикалы инициируют так называемое ПОЛ - свободнорадикальное окисление ненасыщенных жирных кислот (НЖК) в биомембранах, приводящее к образованию гидроперекисей липидов. Следствием предполагаемых цепных реакций является возрастание продуктов ПОЛ, способных вызывать нарушение структуры различных биосубстратов и тем самым повреждать белки и липиды биомембран, инактивировать ферменты, изменять строение макромолекул, целостность клетки и внутриклеточных органелл. Таким образом, постулируется некая глобальная система окисления, возможная во всех клеточных образованиях, содержащих в своем составе НЖК, хаотический процесс, в основе которого лежат «цепные, лавинообразные» реакции. И в то же время приводятся нормы промежуточных продуктов ПОЛ - например малонового диальдегида, диеновых конъюгатов, других продуктов. Возникает первое противоречие: внутриклеточный хаос, разрушительный процесс генетически запрограммирован, что противоречит биологическим законам. В качестве второго противоречия можно отметить, что ПОЛ как системное явление не соответствует требованиям, предъявляемым к изучению метаболических процессов (таблица).

Таблица. Стратегия изучения метаболического процесса или метаболического пути

Вывод о существовании биохимического процесса или метаболического пути, сделанный на основании наблюдений над целым организмом
in vivo
Анализ нарушений процесса, вызванных специфическими болезнями (врожденные ошибки метаболизма, рак и т.д.)
Локализация процесса в одном или нескольких органах
Локализация процесса в одной или нескольких клеточных органеллах или субклеточных фракциях
Рассмотрение процесса в виде отдельных реакций
Очистка его индивидуальных субстратов, продуктов, ферментов, кофакторов и других компонентов
Анализ механизмов, контролирующих процесс in vitro
Изучение механизмов отдельных реакций
Реконструкция процесса
Изучение процесса на генетическом уровне методом рекомбинантных ДНК

Применение такого подхода позволяет обычно выяснить детали биохимических процессов или метаболических путей. В общем виде эта схема использовалась для изучения главных метаболических путей в организме. Организация метаболических процессов в организме контролируется генетической программой на всем протяжении жизни. Поэтому утверждение «хаоса» ПОЛ противоречит вышеназванному постулату.

Схема. Образование эйкозаноидов (по: Марри Р. и соавт., 2004)

Третье противоречие заключается в том, что в организме существует ферментная система, подконтрольная геному, осуществляющая синтез эйкозаноидов (простагландинов, лейкотриенов, тромбоксанов), играющих важнейшую роль в функционировании организма. В этом процессе промежуточными продуктами являются малоновый диальдегид, гидроперекиси липидов (схема). И здесь действительно речь может идти о нормативах этих и других показателей. Образование эйкозаноидов является элементом проявления общего неспецифического адаптационного синдрома. Поэтому увеличение количества различных продуктов ПОЛ (в том числе малонового диальдегида и диеновых конъюгатов) выявляют при большинстве заболеваний . Их уровень зависит от нейроэндокринных сдвигов как следствия развития неспецифического адаптационного синд­рома. В стрессовой катаболической (адренергически-кортикоидной) фазе одновременно с распадом органических молекул протекают синтетические процессы - образуются эйкозаноиды, позволяющие преодолевать стресс. Перекиси липидов, образующиеся в процессе синтеза эйкозаноидов, полностью метаболизируются, нейтрализуются (а не накапливаются, как считают сторонники теории ПОЛ).

Из третьего противоречия вытекает четвертое: если интенсивный самопроизвольный процесс окисления НЖК (ПОЛ) происходит, то как определить, какая часть перекисных продуктов образуется в процессе ПОЛ, инициируемом АФК, а какая - в процессе синтеза эйкозаноидов? В настоящее время определяемые перекисные продукты сторонниками концепции приписываются ПОЛ при отсутствии каких-либо доказательных исследований.

В свете сказанного становится понятным отсутствие даже упоминания о ПОЛ в известном учебнике Д.М. Фаллера и Д. Шилдса «Молекулярная биология клетки» , монографии известных биохимиков Я. Кольмана и К.Г. Рема . В то же время детально представлены сведения об эйкозаноидах, их роли в функции клетки. Сама теория ПОЛ изначально базируется на результатах исследований in vitro . Возможность существования подобных разрушительных процессов in vivo вызывает большие сомнения, исходя из того, что период полужизни белков, интенсивность клеточного деления, апоптоз запрограммированы ДНК. Как показал с помощью изотопов Шёнхаймер, обмен липидов в организме протекает поразительно быстро. Очень быстрым процессом является обновление жирных кислот. Период биологической полужизни жирных кислот в различных органах животных составляет от 1,5 до 8 сут. На наш взгляд, ошибочным является утверждение, что перекиси липидов накапливаются в организме и оказывают токсическое действие. Известно, что образующиеся в процессе окисления НЖК гидроперекиси и циклические перекиси не могут накапливаться в организме: они разлагаются до жирных альдегидов, например: капронового, малонового, полуальдегида капроновой кислоты . Линолевая кислота образует 1 молекулу малонового диальдегида, линоленовая - 2, арахидоновая - 3, клупанодоновая - 4. Продукты расщепления линолевой кислоты подвергаются дальнейшему окислению с образованием капроновой, азелаиновой и малоновой кислот, которые в конечном итоге подвергаются окислению до СО 2 и Н 2 О 2 в цикле Кребса. Подобному превращению подвергаются промежуточные продукты линоленовой, арахидоновой и клупанодоновой кислот.

По заключению известного биохимика А. Ленинджера , в клетках человека в обычных условиях самоокисление НЖК полностью заторможено благодаря наличию витамина Е, различных ферментов и аскорбиновой кислоты. Исследования доказательного характера, которые бы опровергли эту точку зрения, до сих пор отсутствуют. А. Ленинджер допускает, что при некоторых заболеваниях самоокисление может иметь место, вызывая образование в ряде тканей аномальных липидных включений. Тот факт, что ПОЛ, инициируемое в гидрофобном пространстве клеточных мембран, способно прерываться витамином Е, подтверждают другие биохимики. Высокая концентрация витамина Е в биологических мембранах препятствует их повреждению свободными радикалами . Дефицит же витамина Е у человека отмечается чрезвычайно редко . Следует думать, что многочисленные публикации клинического характера, авторы которых определяли диеновые конъюгаты, малоновый диальдегид, гидроперекиси и другие метаболиты при самых различных заболеваниях и состояниях, отражают не ПОЛ, а другой конкретный ферментативный, генетически обусловленный процесс - синтез эйкозаноидов. В процессах синтеза эйкозаноидов участвует целый ряд ферментов (фосфолипаза А 2 , циклооксигеназы, липооксигеназы и др.). Из свободных полиненасыщенных жирных кислот и, прежде всего, арахидоновой (линолевой, линоленовой после их превращения в арахидоновую кислоту) образуются простагландины . Перечисленные полиненасыщенные жирные кислоты входят в состав фосфолипидов, в молекуле которых эфирной связью связаны с С-2-концом глицерола. Из фосфолипидов они высвобождаются под действием фосфолипазы А 2 и становятся субстратом биосинтеза простагландинов. Продукты окисления выводятся с мочой. В мембранах клеток различных тканей имеются рецепторы, на которые действуют простагландины. Иными словами, образование перекисей липидов в различных тканях является нормальным процессом и осуществляется под контролем ферментов. Все полиеновые кислоты (линолевая, линоленовая, арахидоновая) при участии липооксигеназы окисляются до гидроперекисей, гидроксипроизводных жирных кислот, из которых в результате последовательных реакций образуются лейкотриены . При участии простагландин-синтазы (циклооксигеназа + пероксидаза) арахидоновая кислота превращается в ее метаболиты - простагландины, простациклины, тромбоксаны, лейкотриены, то есть локальные гормоны, обладающие различной физиологической активностью . Поскольку образование эйкозаноидов является элементом общего неспецифического адаптационного синдрома, рост количества различных продуктов ПОЛ определяется при самых различных заболеваниях . Уровень продуктов ПОЛ зависит от нейроэндокринных сдвигов как следствия развития стресса.

Выводы

Имеющиеся на сегодняшний день представления о ПОЛ, в основном базирующиеся на исследованиях in vitro , не соответствуют требованиям, предъявляемым для признания существования изучаемого метаболического процесса или метаболического пути. Нет критериев, методологических подходов, позволяющих судить о параметрах выраженности ПОЛ in vivo . Оценивать выраженность ПОЛ (инициируемом АФК) в организме по содержанию в крови продуктов ПОЛ не представляется адекватным, поскольку эти метаболиты образуются в процессе биосинтеза эйкозаноидов - ферментативного, генетически детерминированного процесса. Тот факт, что в крови определяется физиологический (фоновый) уровень малонового диальдегида, диеновых конъю­гатов, других продуктов ПОЛ, свидетельствует о существовании строгого контроля за окислением липидов со стороны иерархической системы регуляции, и в конечном итоге ДНК. (ДНК осуществляет контроль метаболизма посредством синтеза ферментов и клеточных белков.) Поэтому утверждение о существовании в клетках неконтролируемых свободнорадикальных реакций в больших масштабах является необоснованным. По мнению А. Ленинджера, «…в клетках в обычных условиях самоокисление ненасыщенных жиров полностью заторможено благодаря наличию витамина Е, различных ферментов, а также, по-видимому, аскорбиновой кислоты. Однако при некоторых заболеваниях оно может иметь место, вызывая в ряде тканей образование аномальных липидных включений (Т. 1, с. 331)». Существенные повреждения свободными радикалами липидов клеточных мембран, нуклеиновых кислот происходят при лучевой болезни, влиянии канцерогенных, токсических факторов.

Список использованной литературы

  • 1. Грацианский Н.А. (2002) Очередное (окончательное) подтверждение неэффективности антиоксидантных витаминов в профилактике коронарной болезни сердца и ее осложнений. Кардиология, 42(2): 85–86.
  • 2. Грацианский Н.А. (2001) Статины как противовоспалительные средства. Кардиология, 12: 14–26.
  • 3. Ленинджер А. (1985) Основы биохимии: В 3 т. Мир, Москва, Т. 1.
  • 4. Хорст А. (1982) Молекулярные основы патогенеза болезней.: Пер. с польск. Медицина, Морсква, 456 с.
  • 5. Stadtman E.R., Oliver C.N. (1991) Metal-catalyzed oxidation of proteins: physiological consequences. J. Biol. Chem., 266: 2005–2008.
  • 6. Уайт А., Хендлер Ф., Смит Э. и др. (1981) Основы биохимии: В 3 т. Мир, Москва. Т. 2, 617 с.
  • 7. Марри Р., Греннер Д., Мейес П. и др. (2004) Биохимия человека. Пер. с англ.: В 2 т. Мир, Москва. Т. 2, 414 с.
  • 8. Казимирко В.К., Мальцев В.И., Бутылин В.Ю. и др. (2004) Свободнорадикальное окисление и антиоксидантная терапия. МОРИОН, Киев, 160 с.
  • 9. Фаллер Д.М., Шилдс Д. (2006) Молекулярная биология клетки. Руководство для врачей. Пер. с англ. Издательство БИНОМ, Москва, 256 с.
  • 10. Кольман Я., Рем К.Г. (2000) Наглядная биохимия: Пер. с нем. Мир, Москва, 469 с.
  • 11. Савицкий И.В. (1981) Биологическая химия. Вища школа, Київ, 488 с.
  • 12. Березов Т.Т., Коровкин Б.Ф. (1990) Биологическая химия: Учеб. под ред. С.С. Дебова, Медицина, Москва, 528 с.
  • 13. Ерин А.Н., Скрыпин В.И., Прилипко Л.Л. (1988) Витамин Е. Молекулярные механизмы действия в биологических мембранах. Кислородные радикалы в химии, биологии и медицине. Рига. С. 180–208.
  • 14. Владимиров Ю.А. (1989) Роль нарушений липидного слоя мембран в развитии патологических процессов. Патолог. физиол. и эксперим. терапия. 4: 7–17.
  • 15. Halliwell B., Gutteridge J.M.C. (1989) Free radicals in biology and medicine. 2 nd ed. Clarendoln Press, Oxford.
  • 16. Halliwell B., Gross C.E. Gutteridge J.M.C. (1992) Free radicals, antioxidants and human disease: where are we now? Lab. Clin. Med., 119: 598–620.

ПЕРЕКИСНЕ ОКИСнЕННЯ ЛІПІДІВ: ПРОТИРІЧЧЯ ПРОБЛЕМИ

В.К. Казимирко, Л.М. Іваніцька, В.В. Кутовий, А.Г. Дубкова, Т.С. Сілантьєва

Резюме. Уявлення про перекисне окиснення ліпідів (ПОЛ), що в основному базуються на дослідженнях in vitro, не відповідають вимогам, які ставляться для визнання існування метаболічного процесу чи метаболічного шляху. Відсутні критерії, методологічні підходи, які дозволяють визначити параметри вираженості ПОЛ in vivo. Наявність у крові фізіологічного (фонового) рівня малонового діальдегіду, дієнових кон’югатів, інших продуктів ПОЛ свідчить про існування чіткого контролю за окисненням ліпідів з боку ієрархічної системи регуляції та на завершення - ДНК. Тому твердження про існування у клітинах неконтрольованих вільнорадикальних реакцій у великих масштабах є необґрунтованим. При деяких захворюваннях самоокиснення може мати місце, викликаючи утворення в ряді тканин аномальних ліпідних включень.

Ключові слова: перекисне окиснення ліпідів, вільні радикали, ДНК, дієнові кон’югати, малоновий діальдегід, ейкозаноїди.

LIPID PEROXIDATION: CONTROVERSERY PROBLEM

V.K. Kazimirko, L.N. Ivanitska, V.V. Kutovyi, A.G. Dubkova, T.S. Silantieva

Summary. The concept of lipid peroxidation, mainly based on studies in vitro, does not meet the requirements for recognition of the studied process existence or metabolic pathway. There are no criteria, methodological approaches to judge the severity of lipid peroxidation parameters in vivo. Determined in blood physiological (background) level of malondialdehyde, conjugated diens and other lipid peroxidation products, indicates the existence of lipid oxidation strict control by the hierarchical system of regulation and eventually - DNA. Therefore, the assertion of the existence of cells uncontrolled free radical reactions on a large scale is unreasonable. In some diseases, auto-oxidation may occur, causing the formation of abnormal lipid inclusions in a number of tissues.

Key words: lipid peroxidation, free radicals, DNA, conjugated diens, malondialdehyde, eicosanoids.

Адрес для переписки:
Казимирко Виталий Казимирович
04112, Киев, ул. Дорогожицкая, 9
Национальная медицинская академия
последипломного образования
имени П.Л. Шупика